Квадратное уравнение решение неполных квадратных уравнений видео

Неполные квадратные уравнения

Квадратное уравнение решение неполных квадратных уравнений видео

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | ВидеоурокСкачать

АЛГЕБРА 8 класс : Решение неполных квадратных уравнений | Видеоурок

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Квадратное уравнение решение неполных квадратных уравнений видео

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Видео:Квадратные уравнения решение неполных квадратных уравнений – 8 класс алгебраСкачать

Квадратные уравнения решение неполных квадратных уравнений – 8 класс алгебра

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Видео:Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки

  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:

  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Видео:Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)

    #115 Урок 1. Квадратные уравнения. Дискриминант. Алгебра 8 класс.

    Квадратные уравнения. Какое квадратное уравнение называется полным? Формула дискриминанта и корней полного квадратного уравнения. Уравнения с дробями. Как избавиться от всех знаменателей сразу. Алгебра 8 класс. Примеры с решением и объяснением. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.

    Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

    #116 Урок 2. Неполные квадратные уравнения. Решение через дискриминант. Алгебра 8 класс.Математика.

    Квадратные уравнения. Какое квадратное уравнение называется полным? Какое квадратное уравнение называется неполным? Формула дискриминанта и корней полного квадратного уравнения. Как решать неполное квадратное уравнение через дискриминант. Алгебра 8 класс. Примеры с решением и объяснением.

    #117 Урок 3. Квадратные уравнения. Текстовые задачи. Алгебра 8 класс.

    Решение текстовых задач составлением квадратного уравнения. Алгебра 8 класс. Примеры с решением.

    • Пример 1: Найдите три последовательных целых числа, если удвоенный квадрат первого из них на 26 больше произведения второго и третьего чисел.
    • Пример 2: Найдите четыре последовательных четных числа, если утроенное произведение второго и третьего чисел на 344 больше произведения первого и четвертого.
    • Пример 3: Найдите стороны прямоугольника, если их разность равна 23 дм, а диагональ 37 дм.
    • Пример 4: Сколько сторон имеет многоугольник, если в нем можно провести 77 диагоналей.

    Задачи с объяснением. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.

    #118 Урок 4 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.

    Квадратные уравнения. Параметры. Алгебра 8 класс. Что такое параметр? Понятие параметра в математике. Определение параметра: Если в уравнение или неравенство наряду с неизвестной величиной входят неизвестные, но фиксированные числа, обозначаемые буквами, то они называются параметрами. Пример: 10х2 +4х+b=0; х — переменная; b — параметр; В уравнениях (неравенствах) коэффициенты при неизвестных или свободные члены заданные не конкретными числовыми значениями, а обозначенные буквами называются параметрами. Примеры с решением и объяснением.

    • Пример 1: При каком значении а, число 1/3 является корнем уравнения.
    • Пример 2: При каком значении b имеет единственный корень уравнение? Условие единственности корня. Видеоуроки по математике. Устранение пробелов в знаниях. Подготовка к ЗНО ( ВНО ) по математике. Подготовка к ЕГЭ, ДПА ( ГИА ), ОГЭ по математике.
    #119 Урок 5. Параметры. Решение квадратных уравнений с параметрами. Алгебра 8 класс. Математика.

    Параметры. Решение квадратных уравнений с параметрами. Алгебра 8 класс. Квадратные уравнения. Примеры с решением и объяснением.

    • Пример 1: Решить квадратное уравнение с параметром, если коэффициент при х2 фиксированное число.
    • Пример 2: Решить квадратное уравнение с параметром, если коэффициент при х2 записано с использованием параметра.
    #120 Урок 6. Квадратные уравнения с модулем. Алгебра 8 класс. Решить уравнение. Модуль. Математика.

    Решение квадратных уравнений с модулем. Алгебра 8 класс. Примеры с решением.

    • Пример 1: Решить квадратное уравнение с модулем, раскрыв модуль по определению.
    • Пример 2: Решить квадратное уравнение с модулем, раскрыв модуль, используя свойства модуля.

    Квадратные уравнения с модулем 8 класс; квадратное уравнение под модулем; квадратные уравнения с модулем примеры; решение квадратных уравнений с модулем 8 класс; квадратные уравнения с модулем примеры решения; решение квадратных уравнений содержащих модуль; как раскрыть модуль квадратного уравнения. Как решать квадратное уравнение с модулем. Как раскрыть модуль, используя его определение. Определение модуля. Свойства модуля. Решить квадратное уравнение. Решить через дискриминант. Сделать проверку. Посторонние корни. Как убрать посторонние корни. Математика. Образование. Подготовка к егэ, егэ математика, видео уроки, подготовка к зно, вно математика. Видео уроки алгебра, алгебра видеоуроки, онлайн урок, математика видео уроки, онлайн урок, инфо урок, огэ, огэ математика. Дистанционное обучение.

    #121 Урок 7. Решение квадратных уравнений с использованием свойств функций. Алгебра 8 класс.

    Квадратные уравнения. Использование свойств функций для решения квадратных уравнений. Оценка левой и правой частей уравнения. Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. Примеры с решением.

    • Пример 1: Решить иррациональное уравнение, приводящееся к квадратному, используя свойства функций.
    • Пример 2: Решить уравнение, преобразовав условие по формулам сокращенного умножения и оценив левую и правую части уравнения.
    • Пример 3: Решить уравнение с корнем и модулем.

    #122 Урок 8. Решение квадратных уравнений с учетом ОДЗ. Область определения. Алгебра 8 класс.

    Область определения функции, 4 случая: многочлен, дробь, квадратный корень и квадратные корень в знаменателе. ОДЗ дроби. ОДЗ корня. ОДЗ уравнения. Область определения квадратного корня. Область определения квадратного дроби. Область определения квадратного корня в знаменателе. Что такое область определения. Область определения теория. Область определения, табличка. Примеры с решением. Алгебра 8 класс. Решить квадратное уравнение с учетом ОДЗ. ОДЗ квадратного уравнения; как найти одз в квадратном уравнении; одз корня квадратного уравнения; 2 квадратных уравнения; решение квадратных уравнений; произведение квадратных уравнений; 3 квадратных уравнения. Математика. Образование. Подготовка к егэ, егэ математика, видео уроки, подготовка к зно, вно математика. Видео уроки алгебра, алгебра видеоуроки, онлайн урок, математика видео уроки, онлайн урок, инфо урок, огэ, огэ математика. Дистанционное обучение.

    #62 Урок 9. Решение квадратных и кубических уравнений разложением на множители.

    Как решить квадратное или кубическое уравнение, разложив его на множители?

    1. Разложить на множители (вынести общий множитель за скобки, посмотреть формулы, посмотреть способ группировки).
    2. Приравнять каждый множитель к нулю.
    3. Решить полученные уравнения.

    Формулы сокращенного умножения. Разность квадратов, разность кубов, квадрат разности.Примеры с решением. Решение кубических уравнений. Уравнение четвертой степени. Как решить уравнение?

    • Пример 1: Решить кубическое уравнение разложением на множители.
    • Пример 2: Решить кубическое уравнение, используя формулы сокращенного умножения.
    • Пример 3: Решить кубическое уравнение, используя способ группировки.
    • Пример 4: Решить уравнение 4-й степени разложением на множители.

    Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать

    НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 класс

    Квадратные уравнения. Полное квадратное уравнение. Неполное квадратное уравнение. Дискриминант.

    Как решить квадратное уравнение?
    Как выглядит формула квадратного уравнения?
    Какие бывают квадратные уравнения?
    Что такое полное квадратное уравнение?
    Что такое неполное квадратное уравнение?
    Что такое дискриминант?
    Сколько корней имеет квадратное уравнение?
    Эти вопросы вас больше не будут мучить, после изучения материала.

    Формула квадратного уравнения:

    где x — переменная,
    a,b,c — числовые коэффициенты.

    Квадратное уравнение решение неполных квадратных уравнений видео Виды квадратного уравнения

    Пример полного квадратного уравнения:

    3x 2 -3x+2=0
    x 2 -16x+64=0

    Решение полных квадратных уравнений сводится к нахождению дискриминанта:

    Если D>0, то уравнение имеет два корня и находим эти корни по формуле:

    Квадратное уравнение решение неполных квадратных уравнений видео Корни квадратного уравнения

    Если D=0, уравнение имеет один корень

    Квадратное уравнение решение неполных квадратных уравнений видео корень уравнения

    Записываем сначала, чему равны числовые коэффициенты a, b и c.

    Коэффициент a всегда стоит перед x 2 , коэффициент b всегда перед переменной x, а коэффициент c – это свободный член.
    a=1,b=-1,c=-6

    Находим дискриминант:
    D=b 2 -4ac=(-1) 2 -4∙1∙(-6)=1+24=25

    Дискриминант больше нуля, следовательно, у нас два корня, найдем их:

    Квадратное уравнение решение неполных квадратных уравнений видео Нахождения корней по дискриминанту

    Пример №2:
    x 2 +2x+1=0
    Записываем, чему равны числовые коэффициенты a,b и c.
    a=1,b=2,c=1
    Далее находи дискриминант.
    D=b 2 -4ac=(2) 2 -4∙1∙1=4-4=0
    Дискриминант равен нулю, следовательно, один корень:
    x=-b/2a=-2/(2∙1)=-1

    Пример №3:
    7x 2 -x+2=0
    Записываем, чему равны числовые коэффициенты a,b и c.
    a=7,b=-1,c=2
    Далее находи дискриминант.
    D=b 2 -4ac=(-1) 2 -4∙7∙2=1-56=-55
    Дискриминант меньше нуля, следовательно, корней нет.

    Рассмотрим неполное квадратное уравнение:
    ax 2 +bx=0, где числовой коэффициент c=0.

    Пример как выглядят такие уравнения:
    x 2 -8x=0
    5x 2 +4x=0

    Чтобы решить такое уравнение необходимо переменную x вынести за скобки. А потом каждый множитель приравнять к нулю и решить уже простые уравнения.

    ax 2 +bx=0
    x(ax+b)=0
    x1=0 x2=-b/a

    Пример №1:
    3x 2 +6x=0
    Выносим переменную x за скобку,
    x(3x+6)=0
    Приравниваем каждый множитель к нулю,
    x1=0

    3x+6=0
    3x=-6
    Делим все уравнение на 3, чтобы получить у переменной x коэффициент равный 1.
    x=(-6)/3
    x2=-2

    Пример №2:
    x 2 -x=0
    Выносим переменную x за скобку,
    x(x-1)=0
    Приравниваем каждый множитель к нулю,
    x1=0

    Рассмотрим неполное квадратное уравнение:
    ax 2 +c=0, где числовой коэффициент b=0.

    Чтобы решить это уравнение, нужно записать так:
    x 2 =c/a , если число c/a будет отрицательным числом, то уравнение не имеет решения.
    А если c/a положительное число, то решение выглядит таким образом:

    Квадратное уравнение решение неполных квадратных уравнений видео корень квадратного уравнения

    Пример №1:
    x 2 +5=0
    x 2 =-5, видно, что -5 2 -12=0
    3x 2 =12
    x 2 =12/3
    x 2 =4

    Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

    💡 Видео

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19 алгебра 8 классСкачать

    РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ. §19  алгебра 8 класс

    Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать

    РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНД

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    Квадратные уравнения. Решение неполных квадратных уравнений.Скачать

    Квадратные уравнения. Решение неполных квадратных уравнений.

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать

    КВАДРАТНОЕ УРАВНЕНИЕ дискриминант

    Урок 94. Квадратные уравнения. Решение неполных квадратных уравнений (8 класс)Скачать

    Урок 94.  Квадратные уравнения.  Решение неполных квадратных уравнений (8 класс)

    Квадратное уравнение. Практическая часть. 1ч. 8 класс.Скачать

    Квадратное уравнение. Практическая часть. 1ч. 8 класс.

    Как решать неполное квадратное уравнение? 😎Скачать

    Как решать неполное квадратное уравнение? 😎

    Как решать неполные квадратные уравнения. Алгебра 8 классСкачать

    Как решать неполные квадратные уравнения. Алгебра 8 класс
    Поделиться или сохранить к себе: