Квадратное уравнение без одного члена

Неполные квадратные уравнения

Неполное квадратное уравнение – это уравнение вида

в котором хотя бы один из коэффициентов b или c равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax 2 + bx = 0,если c = 0;
ax 2 + c = 0,если b = 0;
ax 2 = 0,если b = 0 и c = 0.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решение неполных квадратных уравнений

Чтобы решить уравнение вида ax 2 + bx = 0 , надо разложить левую часть уравнения на множители, вынеся x за скобки:

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

Чтобы ax + b было равно нулю, нужно, чтобы

x = —b.
a

Следовательно, уравнение ax 2 + bx = 0 имеет два корня:

x1 = 0 и x2 = —b.
a

Неполные квадратные уравнения вида ax 2 + bx = 0, где b ≠ 0, решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a 2 — 12a = 0
a(a — 12) = 0
a1 = 0a — 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x 2 = x
7x 2 — x = 0
x(7x — 1) = 0
x1 = 07x — 1 = 0
7x = 1
x2 =1
7

Чтобы решить уравнение вида ax 2 + c = 0 , надо перенести свободный член уравнения c в правую часть:

ax 2 = —c, следовательно, x 2 = —c.
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид x 2 — c = 0 , то сначала опять переносим свободный член в правую часть и получаем:

В этом случае уравнение будет иметь два противоположных корня:

Неполное квадратное уравнение вида ax 2 + c = 0, где c ≠ 0, либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y 2
24 — 2y 2 = 0
-2y 2 = -24
y 2 = 12
y1 = +√ 12y2 = -√ 12

Пример 2. Решите уравнение:

b 2 — 16 = 0
b 2 = 16
b1 = 4b2 = -4

Уравнение вида ax 2 = 0 всегда имеет только один корень: x = 0. Так как a ≠ 0, то из ax 2 = 0 следует, что x 2 = 0, значит, и x = 0. Любое другое значение x не будет являться корнем данного уравнения.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Неполные квадратные уравнения

Квадратное уравнение без одного члена

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 классСкачать

НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ 8 класс

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Квадратное уравнение без одного члена

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Видео:РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНДСкачать

РЕШЕНИЕ НЕПОЛНОГО КВАДРАТНОГО УРАВНЕНИЯ ЗА 5 СЕКУНД

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки

  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:

  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Квадратные уравнения. Полное и неполное квадратное уравнение.

    Квадратные уравнения. Общая информация.

    В квадратном уравнении обязательно должен присутствовать икс в квадрате (поэтому оно и называется

    «квадратным»). Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и

    просто число (свободный член). И не должно быть иксов в степени, больше двойки.

    Алгебраическое уравнение общего вида.

    Квадратное уравнение без одного члена

    Например: Квадратное уравнение без одного члена

    Выражение Квадратное уравнение без одного членаназывают квадратным трёхчленом.

    Элементы квадратного уравнения имеют собственные названия:

    · Квадратное уравнение без одного членаназывают первым или старшим коэффициентом,

    · Квадратное уравнение без одного членаназывают вторым или коэффициентом при Квадратное уравнение без одного члена,

    · Квадратное уравнение без одного членаназывают свободным членом.

    Полное квадратное уравнение.

    В этих квадратных уравнениях слева присутствует полный набор членов. Икс в квадрате с

    коэффициентом а, икс в первой степени с коэффициентом b и свободный член с. Все коэффициенты

    должны быть отличны от нуля.

    Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме

    старшего (либо второй коэффициент, либо свободный член), равен нулю.

    Предположим, что b = 0, — пропадёт икс в первой степени. Получается, например:

    И так далее. Если же c = 0, получим уравнение без свободного члена, например:

    И т.п. А если оба коэффициента, b и c равны нулю, то всё ещё проще, например:

    Обратите внимание, что икс в квадрате присутствует во всех уравнениях.

    Почему а не может быть равно нулю? Тогда исчезнет икс в квадрате и уравнение станет линейным.

    🔍 Видео

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

    Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

    Квадратные уравнения #shorts  Как решать квадратные уравнения

    Математика| Разложение квадратного трехчлена на множители.Скачать

    Математика| Разложение квадратного трехчлена на множители.

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?Скачать

    МАТЕМАТИКА 8 класс - Неполные Квадратные Уравнения. Как решать Неполные Квадратные Уравнения?

    Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные УравненияСкачать

    Квадратный Трехчлен / Разложение квадратного трехчлена на множители, Как решать Квадратные Уравнения

    Как решить квадратное уравнение без дискриминанта и теоремы Виета? Легкий способ решить уравнениеСкачать

    Как решить квадратное уравнение без дискриминанта и теоремы Виета? Легкий способ решить уравнение

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

    Учимся решать неполные квадратные уравнения.Скачать

    Учимся решать неполные квадратные уравнения.

    Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

    Как решать квадратные уравнения. 8 класс. Вебинар | Математика

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)Скачать

    Алгебра 8 класс (Урок№27 - Квадратные уравнения. Неполные квадратные уравнения.)
    Поделиться или сохранить к себе: