Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.
В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.
Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.
Итак, фотон-элементарная частица света, обладающая волновыми свойствами.
Логично считать, что и другие частицы-электроны, нейтроны- обладают волновыми свойствами.
Формула для импульса фотона
была использована для других микрочастиц массой m, движущихся со скоростью v:
По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.
К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.
Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?
Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не «размазывается» по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.
- 4.4.2. Волновая функция и ее физический смысл
- 4.4.3. Соотношение неопределенностей
- 4.4.4.Уравнение Шредингера
- 4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа
- Волны (стр. 6 )
- Квадрат модуля волновой функции входящей в уравнение
- 4.1. Уравнение Шредингера
- Уравнение Шредингера
- 4.2. Частица в одномерной прямоугольной яме с бесконечными стенками
- 4.3. Гармонический осциллятор
- Частица в одномерной потенциальной яме
- 4.4. Частица в поле с центральной симметрией
- 4.5. Орбитальный момент количества движения
- 4.6. Спин
- 4.7. Полный момент количества движения
- 4.8. Квантовые числа
- Таблица квантовых чисел
- Задачи
- 📸 Видео
4.4.2. Волновая функция и ее физический смысл
Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .
Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:
В дальнейшем будем рассматривать только стационарные состояния; ψ-функция является вероятностной характеристикой состояния частицы. Поясним смысл этого утверждения.
Выделим в пространстве достаточно малый объем dV=dxdydz, в пределах которого значения ψ-функции можно считать одинаковыми. Вероятность нахождения dW в частицы в этом объеме пропорциональна объему и зависит от квадрата модуля ψ -функции:
Отсюда следует физический смысл волновой функции:
Квадрат модуля волновой функции равен плотности вероятности, то есть отношению вероятности нахождения частицы в объеме к этому объему .
Интегрируя выражение (4.4.5) по некоторому объему V, находим вероятность нахождения частицы в этом объеме:
4.4.3. Соотношение неопределенностей
Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.
Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .
В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.
В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью
Таким образом, чем точнее определена координата x (Δx→0), тем не менее точно определена проекция р x (Δp x→ ± ), и наоборот. Аналогично,
Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .
Поясним их одним модельным экспериментом.
При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему «размазыванию» пучка электронов, то есть к большей неопределенности импульса и скорости частиц.
Рис. 4.4.1.Пояснение к соотношению неопределенности.
Соотношение неопределенностей можно представить в виде
где ΔE — неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.
Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.
«Размытость» уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:
Это проявляется в уширении спектральных линий.
4.4.4.Уравнение Шредингера
Так как состояние микрочастицы описывают ψ -функцией, то надо указать способ нахождения этой функции с учетом внешних условий. Это возможно в результате решения основного уравнения квантовой механики, предложенного Шредингером. Такое уравнение в квантовой механике постулируется так же, как в классической механике постулируется закон Ньютона.
Применительно к стационарным состояниям уравнение Шредингера может быть записано так:
где m- масса частицы; ; Е и Е n –ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)
Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид
Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.
4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа
Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.
Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов – e (электрон) и Ze (ядро), — находящихся на расстоянии r в вакууме, выражается следующим образом:
Состояние электрона в атоме характеризуется не одним, а несколькими квантовыми числами.
Первое из них — главное квантовое число n =1, 2, 3, . Оно определяет уровни энергии электрона по закону
Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)
На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.
Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.
Второе квантовое число – орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:
Третье квантовое число – магнитное m l , которое при данном l принимает значения 0, ±1, ± 2, …, ±l; всего 2l+1 значений. Это число определяет проекции орбитального момента импульса электрона на некоторое произвольно выбранное направление Z:
Четвертое квантовое число – спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:
Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква – орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.
© ФГОУ ВПО Красноярский государственный аграрный университет, 2015
Видео:Что такое волновая функция? Душкин объяснитСкачать
Волны (стр. 6 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 |
I: 20.16; t=0; k=B; ek=50; m=50; c=0;
S: На рисунке представлена диаграмма энергетических уровней атома. Переход с излучением фотона наибольшей частоты обозначен цифрой …
I: 20.17; t=0; k=B; ek=50; m=50; c=0;
S: На рисунке представлена диаграмма энергетических уровней атома. Переход с излучением фотона наименьшей частоты обозначен цифрой …
I: 20.18; t=0; k=B; ek=50; m=50; c=0;
S: На рисунке представлена диаграмма энергетических уровней атома водорода. Поглощение фотона с наибольшей длиной волны происходит при переходе, обозначенном стрелкой под номером …
I: 20.19; t=0; k=B; ek=50; m=50; c=0;
S: На рисунке представлена диаграмма энергетических уровней атома водорода. Поглощение фотона с наименьшей длиной волны происходит при переходе, обозначенном стрелкой под номером …
I: 20.20; t=0; k=B; ek=50; m=50; c=0;
S: На рисунке представлена диаграмма энергетических уровней атома водорода. Излучение фотона с наименьшей длиной волны происходит при переходе, обозначенном стрелкой под номером …
V2: 21. Соотношение неопределенностей Гейзенберга. (B)
I: 21.01; t=0; k=B; ek=50; m=50; c=0;
S: Высокая монохроматичность лазерного излучения обусловлена относительно большим временем жизни электронов в метастабильном состоянии
. Учитывая, что постоянная Планка , ширина метастабильного уровня (в эВ) будет не менее …
+:
-:
-:
-:
-:
I: 21.02; t=0; k=B; ek=50; m=50; c=0;
S: Положение пылинки массой кг определено с неопределенностью . Учитывая, что постоянная Планка , неопределенность скорости (в м/с) будет не менее …
+:
-:
-:
-:
-:
I: 21.03; t=0; k=B; ek=50; m=50; c=0;
S: Электрон локализован в пространстве в пределах. Учитывая, что постоянная Планка , а масса электрона , неопределенность скорости (в м/с) составляет не менее …
+:
-:
-:
-:
-:
I: 21.04; t=0; k=B; ek=50; m=50; c=0;
S: Время жизни атома в возбужденном состоянии τ =10 нс. Учитывая, что постоянная Планка , ширина энергетического уровня (в эВ) составляет не менее …
+:
-:
-:
-:
-:
I: 21.05; t=0; k=B; ek=50; m=50; c=0;
S: Учитывая, что постоянная Планка , а ширина метастабильного уровня электрона не менее эВ, определить время жизни электрона в метастабильном состоянии.
-:
I: 21.06; t=0; k=B; ek=50; m=50; c=0;
S: Определить массу пылинки в килограммах, если ее положение определено с неопределенностью Δх=0,1мкм, а неопределенность скорости будет при этом не менее м/c. Постоянная Планка .
I: 21.07; t=0; k=B; ek=50; m=50; c=0;
S: Какова неопределенность положения Δх пылинки массой 10-9 кг, если неопределенность скорости при этом будет не менее м/c. Постоянная Планка .
I: 21.08; t=0; k=B; ek=50; m=50; c=0;
S: Определить пределы локализации в пространстве электрона, если известно, что неопределенность скорости составляет не менее 115 м/c. Масса электрона m=9,1·10-31 кг, Постоянная Планка .
I: 21.09; t=0; k=B; ek=50; m=50; c=0;
S: Частица какой массы локализована в пространстве в пределах Δ х = 1 мкм, если неопределенность скорости составляет не менее 115 м/c. Постоянная Планка .
I: 21.10; t=0; k=B; ek=50; m=50; c=0;
S: Определить время жизни атома в возбужденном состоянии, если ширина энергетического уровня составляет не менее 6,6 · 10-8 эВ. Постоянная Планка .
V2: 22. уравнение Шредингера (общие свойства) (A)
I: 22.01; t=0; k=A; ek=25; m=25; c=0;
S: Стационарным уравнением Шредингера для линейного гармонического осциллятора является уравнение …
+:
-:
-:
-:
I: 22.02; t=0; k=A; ek=25; m=25; c=0;
S: Стационарным уравнением Шредингера для частицы в трехмерном ящике с бесконечно высокими стенками является уравнение …
-:
+:
-:
-:
I: 22.03; t=0; k=A; ek=25; m=25; c=0;
S: Стационарным уравнением Шредингера для частицы в одномерном ящике с бесконечно высокими стенками является уравнение …
-:
-:
+:
-:
I: 22.04; t=0; k=A; ek=25; m=25; c=0;
S: Стационарным уравнением Шредингера для электрона в водородоподобном ионе является уравнение …
-:
-:
-:
+:
I: 22.05; t=0; k=A; ek=25; m=25; c=0;
S: Нестационарным уравнением Шредингера является уравнение…
+:
-:
-:
-:
I: 22.06; t=0; k=A; ek=25; m=25; c=0;
S: Стационарное уравнение Шредингера описывает
+: линейный гармонический осциллятор
-: частицу в трехмерном ящике с бесконечно высокими стенками
-: частицу в одномерном ящике с бесконечно высокими стенками
-: электрон в водородоподобном ионе
I: 22.07; t=0; k=A; ek=25; m=25; c=0;
S: Стационарное уравнением Шредингера описывает
-: линейный гармонический осциллятор
+: частицу в трехмерном ящике с бесконечно высокими стенками
-: частицу в одномерном ящике с бесконечно высокими стенками
-: электрон в водородоподобном ионе
I: 22.08; t=0; k=A; ek=25; m=25; c=0;
S: Стационарное уравнением Шредингера описывает
+: частицу в одномерном ящике с бесконечно высокими стенками
-: частицу в трехмерном ящике с бесконечно высокими стенками
-: линейный гармонический осциллятор
-: электрон в водородоподобном ионе
I: 22.09; t=0; k=A; ek=25; m=25; c=0;
S: Стационарное уравнением Шредингера описывает
+: электрон в водородоподобном ионе
-: частицу в одномерном ящике с бесконечно высокими стенками
-: частицу в трехмерном ящике с бесконечно высокими стенками
-: линейный гармонический осциллятор
I: 22.10; t=0; k=A; ek=25; m=25; c=0;
S: Одномерным временным (нестационарным) уравнением Шредингера является уравнение …
+:
-:
-:
-:
I: 22.11; t=0; k=A; ek=25; m=25; c=0;
S: Для уравнения Шредингера справедливы следующие утверждения:
1. Уравнение стационарно.
2. Уравнение соответствует трехмерному случаю.
3. Уравнение характеризует состояние частицы в бесконечно глубоком прямоугольном потенциальном ящике.
4. Уравнение характеризует движение частицы вдоль оси Х под действием квазиупругой силы, пропорциональной смещению частицы от положения равновесия.
I: 22.12; t=0; k=A; ek=25; m=25; c=0;
S: С помощью волновой функции , входящей в уравнение Шредингера, можно определить …
+: с какой вероятностью частица может быть обнаружена в различных точках пространства
-: импульс частицы в любой точке пространства
-: траекторию, по которой движется частица в пространстве
-: координату частицы в пространстве
I: 22.13; t=0; k=A; ek=25; m=25; c=0;
S: Квадрат модуля волновой функции , входящей в уравнение Шредингера, равен …
+: плотности вероятности обнаружения частицы в соответствующем месте пространства
-: импульсу частицы в соответствующем месте пространства
-: энергии частицы в соответствующем месте пространства
-: координате частицы в соответствующем месте пространства
I: 22.14; t=0; k=A; ek=25; m=25; c=0;
S: На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n=2 соответствует
+:
-:
-:
-:
I: 22.15; t=0; k=A; ek=25; m=25; c=0;
S: На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n=3 соответствует
+:
-:
-:
-:
I: 22.16; t=0; k=A; ek=25; m=25; c=0;
S: На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n=1 соответствует
+:
-:
-:
-:
I: 22.17; t=0; k=A; ek=25; m=25; c=0;
S: На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n=4 соответствует
+:
-:
-:
-:
I: 22.18; t=0; k=A; ek=25; m=25; c=0;
S: Задана пси-функция микрочастицы. Вероятность того, что частица будет обнаружена в объеме V, определяется выражением …
+:
-:
-:
-:
I: 22.19; t=0; k=A; ek=25; m=25; c=0;
S: Задана пси-функция микрочастицы. Плотность вероятности определяется выражением …
+:
-:
-:
-:
I: 22.20; t=0; k=A; ek=25; m=25; c=0;
S: Задана пси-функция микрочастицы. Вероятность нахождения микрочастицы в единичном объеме в окрестности точки с координатами , определяется выражением …
+:
-:
-:
-:
V2: 23. уравнение Шредингера (конкретные свойства) (B)
I: 23.01; t=0; k=B; ek=50; m=50; c=0;
S: Частица находится в потенциальной яме шириной L с бесконечно высокими стенками в определенном энергетическом состоянии с квантовым числом n, а отношение собственных значений энергий уровней . В этом случае квантовое число n, определяющее энергию частицы, равно …
I: 23.02; t=0; k=B; ek=50; m=50; c=0;
S: Волновая функция вида: является стоячей волной де Бройля и описывает состояние частицы, находящейся на энергетическом уровне с номером n в одномерной прямоугольной потенциальной яме шириной L с бесконечно высокими стенками. Определите номер n энергетического уровня, если для соседних уровней с номерами (n+1) и (n-1) отношение числа узлов, где волновые функций и на отрезке обращается в нуль, равно .
I: 23.03; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон в некотором пространственном интервале определяется через волновую функцию . Если — функция на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна …
+:
-:
-:
-:
-:
I: 23.04; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
-:
I: 23.05; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
-:
I: 23.06; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
-:
I: 23.07; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
-:
I: 23.08; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
-:
I: 23.09; t=0; k=B; ek=50; m=50; c=0;
S: Вероятность обнаружить электрон на участке (a, b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , где – плотность вероятности, определяемая -функцией. Если -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке равна…
+:
-:
-:
-:
Видео:Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать
Квадрат модуля волновой функции входящей в уравнение
Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.
4.1. Уравнение Шредингера
В квантовой физике изменение состояния частицы описывается уравнением Шредингера
(4.1) |
где – оператор Гамильтона – аналог классической функции Гамильтона
в которой и заменены операторами импульса x, y, z и координаты , , :
х → = х, y → = y, z → = z,
(4.2) |
Уравнение Шредингера
Зависящее от времени уравнение Шредингера:
где – гамильтониан системы.
Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или
Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E
θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).
Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:
или
Для трехмерной системы с массой m в поле с потенциалом U():
−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),
где Δ – лапласиан.
Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).
Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид
ψ() = Eψ(). | (4.3) |
Это уравнение называют стационарным уравнением Шредингера.
Так как в стационарном состоянии
Ψ(,t) = ψ()exp(−iEt/ћ) | (4.4) |
и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она
|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.
4.2. Частица в одномерной прямоугольной яме с бесконечными стенками
Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:
(4.5) |
Рис.4.1. Прямоугольная яма с бесконечными стенками
Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L
(4.6) |
Волновая функция, являющаяся решением уравнения (4.9), имеет вид
ψ(x)= Аsin kx + Bcos kx, | (4.7) |
где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует
Аsin kL = 0. | (4.8) |
kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En
n = 1, 2, 3, … | (4.9) |
Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки
(4.10) |
В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полностью описывается с помощью одного квантового числа n. Спектр энергий дискретный.
Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.
4.3. Гармонический осциллятор
Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид
(4.11) |
В этом случае одномерное уравнение Шредингера имеет вид
(4.12) |
Допустимые значения полной энергии определяются формулой
En = ћω0(n + 1/2), n = 0, 1, 2, | (4.13) |
В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.
Частица в одномерной потенциальной яме
Одномерная прямоугольная яма шириной L:
n = 1, 2, …
Одномерный гармонический осциллятор:
En = ћω0(n + 1/2), n = 0, 1, 2,
4.4. Частица в поле с центральной симметрией
В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид
(4.14) |
Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций
ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ), | (4.15) |
где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям
2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ) | (4.16) |
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ) | (4.17) |
Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.
Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.
Решения уравнения |
существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.
4.5. Орбитальный момент количества движения
Собственные значения L 2 и Lz являются решением уравнений
2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).
Они имеют следующие дискретные значения
L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.
Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:
Спектроскопические названия орбитальных моментов l
l = 0 | s-состояние |
l = 1 | p-состояние |
l = 2 | d-состояние |
l = 3 | f-состояние |
l = 4 | g-состояние |
l = 5 | h-состояние |
и. т. д. |
Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:
(4.18) |
Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).
Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.
Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения
=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.
Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .
4.6. Спин
Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:
2 = ћ 2 s(s + 1) | (4.19) |
В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:
szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.
Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.
4.7. Полный момент количества движения
Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.
= + .
Квадрат полного момента имеет значение:
2 = ћ 2 j(j + 1).
Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:
j = l + s, l + s −1. |l − s|
Проекция на выделенную ось Jz также принимает дискретные значения:
Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.
4.8. Квантовые числа
Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.
Таблица квантовых чисел
n | Радиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞. |
J, j | Полный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1). |
L, l | Орбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1). |
m | Магнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0. |
S, s | Спиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы определенного типа. S 2 = ћ 2 s(s + 1). |
sz | Квантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0. |
P или π | Пространственная четность. Характеризует поведение системы при пространственной инверсии → — (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные. |
I | Изоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий |
Для обозначения спинового момента часто используют букву J.
Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это
- Радиальное квантовое число n ( 1, 2, …, ∞),
- Орбитальное квантовое число l (0, 1, 2, …),
- Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
- Спин протона s =1/2.
Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:
- Кулоновский потенциал U = Q/r,
- Прямоугольная потенциальная яма
- Потенциал типа гармонического осциллятора U = kr 2 ,
- Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):
где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ —). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.
Задачи
4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.
4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.
4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?
4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).
4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?
4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ
4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2
4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2
4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?
4.10. Почему возникают вырожденные состояния?
4.11. Написать оператор Гамильтона электронов в атоме He.
4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.
4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?
4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.
4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.
4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0
4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2
4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3
4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм
4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.
4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?
4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?
4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2
4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
📸 Видео
Урок 454. Понятие о волновой функцииСкачать
Лекции 5-6. Уравнение Шредингера и его приближенные решения. Межатомные.Скачать
Урок 455. Уравнение ШрёдингераСкачать
Лекция №4 "Волновая функция. Уравнение Шредингера" (Гавриков А.В.)Скачать
Операторы. Волновая функция.Скачать
Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"Скачать
Теория Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шрёдингера.Скачать
Простое объяснение квантовой волновой функции с канала DoSСкачать
QM_01 (Волновая функция)Скачать
Квантовая механика 49 - Реальна ли волновая функция?Скачать
Волновые функции электрона в водородоподобном атомеСкачать
Квантовая механика. Основа реальности часть 1. Волновая функция.Скачать
Что такое коллапс волновой функции? Душкин объяснитСкачать
Петров С.В. - Квантовая механика - 4. Свойства и элементы пространства волновой функцииСкачать
97. Микрочастица в потенциальной ямеСкачать
Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | НаучпопСкачать
Волна де Бройля (видео 4) | Квантовая физика | ФизикаСкачать
Уравнение ШрёдингераСкачать