Кривые на плоскости уравнение кривой в декартовой системе координат

Уравнения кривых.

В аналитической геометрии всякому уравнению вида F(x; у) = 0 может соответствовать некоторая линия, свойства которой определяются данным уравнением.

Под F(x; у) = 0 понимаем многочлен степени n; степень многочлена n – порядок линии.

Значит, кривая первого порядка, в декартовой системе координат, описывается алгебраическим уравнением первого порядка ax + by + c = 0, где хотя бы один из коэффициентов a или b отличен от нуля. Это уравнение называют также линейным уравнением. А само выражение, типа ax+by+c=0 и a 2 +b 2 ≠ 0, принято обозначать как общее уравнение прямой.

Следовательно, любая прямая на плоскости представляет собой алгебраическую кривую первого порядка и любая алгебраическая кривая первого порядка на плоскости есть прямая.

Общее уравнение кривой второго порядка в декартовых координатах имеет вид:

причем, в зависимости от значения произведение аb получаем:

— эллипс, частный случай — окружность ( когда ab > 0);

Видео:Построение кривой в полярной системе координатСкачать

Построение кривой в полярной системе координат

Упражнения

1. Нарисуйте кривую, задаваемую уравнением r = sin 4 φ .

2. Нарисуйте кривую, задаваемую уравнением r = cos φ .

3. Для параболы x 2 = 4 ay выберем в качестве полярной оси луч, идущий по оси Oy с началом в фокусе F (0, a ) параболы. Переходя от де­картовых к полярным координатам, покажите, что парабола с выколотой вершиной задается уравнением

Кривые на плоскости уравнение кривой в декартовой системе координат .

4. Докажите, что уравнение

Кривые на плоскости уравнение кривой в декартовой системе координат

задает эллипс, если 0 Кривые на плоскости уравнение кривой в декартовой системе координат Кривые на плоскости уравнение кривой в декартовой системе координат > 1.

5. Нарисуйте спираль Архимеда, заданную уравнением r = — φ . Чему равно расстояние между соседними витками этой спирали?

6. Человек идет с постоянной скоростью вдоль радиуса вращающейся карусели. Какой будет траектория его движения относительно земли?

7. Нарисуйте гиперболическую спираль , задаваемую уравнением r = Кривые на плоскости уравнение кривой в декартовой системе координат .

8. Нарисуйте спираль Галилея , которая задается уравнением r = a Кривые на плоскости уравнение кривой в декартовой системе координат 2 ( a > 0). Она вошла в историю математики в XVII веке в связи с задачей нахождения формы кривой, по которой двигается свободно падающая в области экватора точка, не обладающая начальной скоростью, сообщаемой ей вращением земного шара.

9. Нарисуйте кривую, задаваемую уравнением r = | Кривые на плоскости уравнение кривой в декартовой системе координат |.

10. Нарисуйте кривую, задаваемую уравнением r = Кривые на плоскости уравнение кривой в декартовой системе координат .

11. Нарисуйте кривую, задаваемую уравнением r = Кривые на плоскости уравнение кривой в декартовой системе координат .

12. Найдите параметрические уравнения: а) спирали Архимеда; б) логарифмической спирали.

1. Березин В. Кардиоида //Квант. – 1977. № 12.

2. Березин В. Лемниската Бернулли //Квант. – 1977. № 1.

3. Берман Г.Н. Циклоида. – М.: Наука, 1975.

4. Бронштейн И. Эллипс. Гипербола. Парабола / Такая разная геометрия. Составитель А.А. Егоров. – М.: Бюро Квантум, 2001. — / Приложение к журналу «Квант» № 2/2001.

5. Васильев Н.Б., Гутенмахер В.Л. Прямые и кривые. – 3-е изд. – М.: МЦНМО, 2000.

6. Маркушевич А.И. Замечательные кривые. – М.- Л.: Гос. изд. течн. – теор. лит., 1951. — / Популярные лекции по математике, выпуск 4.

7. Савелов А.А. Плоские кривые. – М.: ФИЗМАТЛИТ, 1960.

8. Смирнова И.М., Смирнов В.А. Кривые. Курс по выбору. 9 класс. – М.: Мнемозина, 2007.

9. Смирнова И.М., Смирнов В.А. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2011.

10. Смирнова И.М., Смирнов В.А. Компьютер помогает геометрии. – М.: Дрофа, 2003.

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Примеры решений: полярная система координат

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости на тему Кривые в полярной системе координат: табуляция функции, построение графика, переход к уравнению в декартовой системе координат т.п.

Основные этапы при работе с кривой, заданной в полярной системе координат, такие:

  • 1. Построить полярную систему координат (изобразить полюс, полярную ось и угловые направления). Обычно строят вспомогательные лучи через $pi/6$ или $pi/8$ радиан, для большинства кривых этих точек (получается от $0$ до $2pi$ помещается 12 или 16 значений) вполне достаточно.
  • 2. Табулируем кривую: берем последовательно все углы $phi$ (см. выше): $0$, $pi/8$, $pi/4$, $3pi/8$. и в каждой точке вычисляем значение $rho(phi)$. Заносим значения в таблицу.
  • 3. Берем начерченную в первом пункте полярную систему координат и наносим точки. На полярной оси отмеряем значние $rho(0)$, на луче $pi/8$ — $rho(pi/8)$ и так далее.
  • 4. Соединяем все точки плавной линией. Получается искомая кривая. Для проверки правильности можно построить дополнительно график с помощью онлайн-сервисов.
  • 5. Если требуется найти уравнение кривой в декартовой системе координат, подставляем подходящие формулы $rho=sqrt$, $x=rhocos phi$, $y=rhosin phi$ и преобразуем.

Более подробно — в примерах ниже. Удачного изучения!

Видео:Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

Лекция 22. Декартова система координат на плоскости и полярная система координат

Полярная система координат: решения онлайн

Задача 1. Построить следующие кривые в полярной системе координат: Лемниската Бернулли $rho^2=2cos 2phi$ (полюс помещен в точку О).

Задача 2. Построить по точкам кривую, заданную уравнением в полярной системе координат $rho=2sin 2phi$. Найти уравнение кривой в прямоугольной системе координат, начало которой совмещено с полюсом, а положительная полуось $Ox$ с полярной осью.

Задача 3. Дана линия своим уравнением в полярной системе координат $r=8 sin phi$. Требуется:
1) построить линию по точкам, давая $phi$ значения через $pi/6$, начиная с 0 до $2pi$.
2) Найти уравнение этой линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью.

Задача 4. Линия задана уравнением $r=18/(4+5cos phi)$ в полярной системе координат. Требуется:
Построить линию по точкам, начиная от 0 до $2pi$ и придавая $phi$ значения через промежуток $pi/8$.
Найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.
Назвать линию, найти координаты фокусов и эксцентриситет.

🔍 Видео

Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать

Математика Без Ху!ни. Полярные координаты. Построение графика функции.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

§30 Уравнения кривых второго порядка в полярных координатахСкачать

§30 Уравнения кривых второго порядка в полярных координатах

Полярная система координатСкачать

Полярная система координат

Поворот и параллельный перенос координатных осей. ЭллипсСкачать

Поворот и параллельный перенос координатных осей.  Эллипс

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Лекция 31.1. Кривые второго порядка. ЭллипсСкачать

Лекция 31.1. Кривые второго порядка. Эллипс

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

Видеоурок "Преобразование координат"Скачать

Видеоурок "Преобразование координат"

Лекция по АнГем: Кривые на плоскости.Скачать

Лекция по АнГем: Кривые на плоскости.

Координаты на плоскости и в пространстве. Вебинар | МатематикаСкачать

Координаты на плоскости и в пространстве. Вебинар | Математика

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Видеоурок "Общее уравнение кривой 2 порядка"Скачать

Видеоурок "Общее уравнение кривой 2 порядка"

Полярная система координатСкачать

Полярная система координат

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Видеоурок "Полярная система координат"Скачать

Видеоурок "Полярная система координат"
Поделиться или сохранить к себе: