Критерий фишера для проверки значимости уравнения регрессии

Расчет F-критерия Фишера онлайн

Быстрая навигация по странице:

Видео:Критерий Фишера для проверки адекватности построенной регрессииСкачать

Критерий Фишера для проверки адекватности построенной регрессии

Понятие F-критерия Фишера

F-критерий Фишера – это один из важных статистических критериев, используемых при проверке значимости как уравнения регрессии в целом, так и отдельных его коэффициентов. Для оценки статистической значимости отдельных коэффициентов уравнения множественной регрессии используют так называемые частные F-критерий Фишера. Критическое значение данного критерия при проведении анализа определяется по специальным таблицам, а также может быть определено при помощи специальных функций в различных компьютерных программах. Например, в MS Excel для этого может быть использована функция FРАСПОБР.

Размещено на www.rnz.ru

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

Формулы расчета F-критерия Фишера

В общем виде F-критерий Фишера рассчитывается по следующей формуле:

F = S 2 факт / S 2 ост;
где: S 2 факт — факторная дисперсия;
S 2 ост — остаточная дисперсия

Соответствующие виды дисперсий определяются по следующим формулам:

Критерий фишера для проверки значимости уравнения регрессииформула расчета факторной дисперсии

Критерий фишера для проверки значимости уравнения регрессииформула расчета остаточной дисперсии

В приведенных формулах n – это число наблюдений, m – число параметров при переменной x (то есть количество факторов в модели регрессии).

При этом необходимо обратить внимание на то, что в зависимости от типа исследуемой модели регрессии применяемая формула определения F-критерия Фишера может изменяться. Например, для расчета F-критерия Фишера для парной линейной регрессии может использоваться следующая формула:

Критерий фишера для проверки значимости уравнения регрессииформула расчета F-критерия Фишера для парной линейной регрессии

При использовании коэффициента детерминации расчет F-критерия Фишера для парной линейной регрессии может быть выполнен по такой формуле:

Критерий фишера для проверки значимости уравнения регрессииформула расчета F-критерия Фишера через коэффициент детерминации

Для парной нелинейной модели регрессии расчет F-критерия Фишера может быть осуществлен через связь с индексом детерминации по следующей формуле:

Критерий фишера для проверки значимости уравнения регрессииформула расчета F-критерия Фишера для парной нелинейной модели регрессии через индекс детерминации

Описания параметров n и m приведено выше.

Для уравнения множественной регрессии F-критерий Фишера рассчитывается по следующей формуле:

Критерий фишера для проверки значимости уравнения регрессииформула расчета F-критерия Фишера для уравнения множественной регрессии

В процессе исследования уравнения множественной регрессии кроме общего F-критерий Фишера могут быть рассчитаны частные F-критерии. В случае анализа уравнения с двумя регрессорами (переменными) вычисление частных F-критериев может быть выполнено по следующим формулам:

Критерий фишера для проверки значимости уравнения регрессииформула расчета частных F-критериев Фишера для уравнения множественной регрессии

Видео:Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в ExcelСкачать

Критерий Стьюдента и Фишера в Excel, проверка уравнения множественной регрессии в Excel

Значимость F-критерия Фишера

Для определения статистической значимости рассчитанного значения F-критерия Фишера его сравнивают с критическим или табличным значением. При этом табличное значение определяется на основе числа наблюдений, степеней свободы и заданного уровня значимости следующим образом: Fтабл (a; k1; k2), где k1 = m – это количество факторов в построенной регрессионной модели, а k2 = n – m – 1 (n – число наблюдений). Для частного F-критерия k1 = 1, k2 = n – m – 1 (n – число наблюдений).

Интерпретация F — критерия Фишера для уравнения регрессии в целом следующая: в том случае, когда фактическая величина F — критерия Фишера больше табличного показателя, то уравнение регрессии в целом является статистически значимым.

Интерпретация частного F — критерия Фишера следующая: в том случае, когда рассчитанная величина частного Fxi превышает критическое значение, то дополнительное включение фактора xi в регрессионную модель статистически оправданно и коэффициент регрессии bi при соответствующем факторе xi статистически значим. Но если рассчитанная величина Fxi меньше табличного, то дополнительное включение в модель фактора xi не оправдано, т.к. данный фактор, как и коэффициент регрессии при нём является статистически незначимым.

Видео:Проверка адекватности регрессии. Критерий ФишераСкачать

Проверка адекватности регрессии. Критерий Фишера

Пример расчета F-критерия Фишера

Приведем условные примеры расчета F-критерия Фишера

Пример №1. Предположим, что исследуется регрессия с одним фактором (парная), на основе 30-ти наблюдений, в которой коэффициент детерминации составил 0,77. Тогда по приведённой выше формуле фактическое значение F-критерия Фишера составит: F = 0,77/(1-0,77)*(30-2) = 93,74. Для определения значимости его нужно сравнить с табличным значением. Предположим, что используется уровень значимости α = 0.05. Тогда критическая величины Fтабл(0,05; 1; 30-1-1) = 4,2. Так как F > Fтабл, то полученное уравнение регрессии является статистически значимым.

Пример №2. Предположим, что исследуется множественная регрессия с тремя факторами, на основе 40 наблюдений, в которой коэффициент множественной детерминации составил 0,89. Тогда по приведённой выше формуле фактическое значение F-критерия Фишера для уравнения множественной регрессии составит: F = (0,89/(1-0,89))*((40-3-1)/3) = 97,09. Для определения значимости его нужно сравнить с табличным значением. Предположим, что используется уровень значимости α = 0.05. Тогда критическая величины Fтабл(0,05; 3; 40-3-1) = 2,87. Так как F > Fтабл, то полученное уравнение множественной регрессии является статистически значимым.

Видео:Регрессия в ExcelСкачать

Регрессия в Excel

Онлайн-калькулятор F-критерия Фишера

Представляем онлайн калькулятор расчета F-критерия Фишера, используя который, Вы можете самостоятельно определить значения соответствующего показателя. При заполнении приведенной формы калькулятора внимательно соблюдайте размерность полей, что позволит выполнить и точно выполнить вычисления. В приведенной форме онлайн калькулятора уже содержатся данные условного примера, чтобы пользователь мог посмотреть, как это работает и посмотреть, как правильно заполнять поля. Для определения значений соответствующих показателей по своим данным просто внесите их в соответствующие поля формы онлайн калькулятора и нажмите кнопку «Выполнить вычисления». При заполнении формы соблюдайте размерность показателей! Дробные числа записываются с точной, а не запятой!

Калькулятор позволяет вычислить значение F-критерия Фишера на основе коэффициента детерминации (первый вариант) или на основе показателей сумм квадратов отклонений, т.е. используя элементы дисперсионного анализа. Выберите необходимый способ и выполните соответствующие вычисления. Для проверки статистической значимости используется уровень значимости α = 0.05.

Онлайн-калькулятор расчета значения F-критерия Фишера:

1-й вариант: на основе значения коэффициент (индекса) детерминации

2-й вариант: на основе сумм квадратов отклонений

Использование критерия Фишера для проверки значимости регрессионной модели

Критерий Фишера для регрессионной модели отражает, насколько хорошо эта модель объясняет общую дисперсию зависимой переменной. Расчет критерия выполняется по уравнению:

Критерий фишера для проверки значимости уравнения регрессии

где R — коэффициент корреляции;
f1 и f2 — число степеней свободы.

Первая дробь в уравнении равна отношению объясненной дисперсии к необъясненной. Каждая из этих дисперсий делится на свою степень свободы (вторая дробь в выражении). Число степеней свободы объясненной дисперсии f1 равно количеству объясняющих переменных (например, для линейной модели вида Y=A*X+B получаем f1=1). Число степеней свободы необъясненной дисперсии f2 = Nk-1, где N-количество экспериментальных точек, k-количество объясняющих переменных (например, для модели Y=A*X+B подставляем k=1).

Для проверки значимости уравнения регрессии вычисленное значение критерия Фишера сравнивают с табличным, взятым для числа степеней свободы f1 (бóльшая дисперсия) и f2 (меньшая дисперсия) на выбранном уровне значимости (обычно 0.05). Если рассчитанный критерий Фишера выше, чем табличный, то объясненная дисперсия существенно больше, чем необъясненная, и модель является значимой.

Коэффициент корреляции и F-критерий, наряду с параметрами регрессионной модели, как правило, вычисляются в алгоритмах, реализующих метод наименьших квадратов.

Видео:Статистический метод (критерий): как выбрать для анализа?Скачать

Статистический метод (критерий): как выбрать для анализа?

Критерий Фишера и критерий Стьюдента в эконометрике

С помощью критерия Фишера оценивают качество регрессионной модели в целом и по параметрам.

Для этого выполняется сравнение полученного значения F и табличного F значения. F-критерия Фишера. F фактический определяется из отношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

Критерий фишера для проверки значимости уравнения регрессии

где n — число наблюдений;
m — число параметров при факторе х.

F табличный — это максимальное значение критерия под влиянием случайных факторов при текущих степенях свободы и уровне значимости а.

Уровень значимости а — вероятность не принять гипотезу при условии, что она верна. Как правило а принимается равной 0,05 или 0,01.

Если Fтабл > Fфакт то признается статистическая незначимость модели, ненадежность уравнения регрессии.

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

Таблицы по нахождению критерия Фишера и Стьюдента

Таблицы значений F-критерия Фишера и t-критерия Стьюдента Вы можете посмотреть здесь.

Табличное значение критерия Фишера вычисляют следующим образом:

  1. Определяют k1, которое равно количеству факторов (Х). Например, в однофакторной модели (модели парной регрессии) k1=1, в двухфакторной k=2.
  2. Определяют k2, которое определяется по формуле n — m — 1, где n — число наблюдений, m — количество факторов. Например, в однофакторной модели k2 = n — 2.
  3. На пересечении столбца k1 и строки k2 находят значение критерия Фишера

Для нахождения табличного значения критерия Стьюдента определяют число степеней свободы, которое определяется по формуле n — m — 1 и находят его значение при определенном уровне значимости (0,10, 0,05, 0,01).

Видео:A.4.14 Точный тест Фишера (введение в статистику)Скачать

A.4.14 Точный тест Фишера (введение в статистику)

Критерии Стьюдента

Для оценки статистической значимости модели по параметрам рассчитывают t-критерии Стьюдента.

Оценка значимости модели с помощью критерия Стьюдента проводится путем сравнения их значений с величиной случайной ошибки:

Критерий фишера для проверки значимости уравнения регрессии

Случайные ошибки коэффициентов линейной регрессии и коэффициента корреляции определяются по формулам:

Критерий фишера для проверки значимости уравнения регрессии

Сравнивая фактическое и табличное значения t-статистики и принимается или отвергается гипотеза о значимости модели по параметрам.

Зависимость между критерием Фишера и значением t-статистики Стьюдента определяется так

Критерий фишера для проверки значимости уравнения регрессии

Как и в случае с оценкой значимости уравнения модели в целом, модель считается ненадежной если tтабл > tфакт

Видео:Однофакторный дисперсионный анализ в MS ExcelСкачать

Однофакторный дисперсионный анализ в MS Excel

Видео лекциий по расчету критериев Фишера и Стьюдента

Для более подробного изучения расчетов критериев Фишера и Стьюдента советуем посмотреть это видео

Лекция 1. Критерии и Гипотезы

Лекция 2. Критерии и Гипотезы

Лекция 3. Критерии и Гипотезы

Видео:Расчет точного теста Фишера в excelСкачать

Расчет точного теста Фишера в excel

Определение доверительных интервалов

Для построения доверительного интервала определяется предельная ошибка А для обоих показателей:

Критерий фишера для проверки значимости уравнения регрессии

Формулы для нахождения доверительных интервалов выглядят так

Критерий фишера для проверки значимости уравнения регрессии

Прогнозное значение у определяется с помощью подстановки в
уравнение регрессии прогнозного значения х. Вычисляется средняя стандартная ошибка прогноза

Критерий фишера для проверки значимости уравнения регрессии

Критерий фишера для проверки значимости уравнения регрессии

и находится доверительный интервал

Критерий фишера для проверки значимости уравнения регрессии

Задача регрессионного анализа в предмете эконометрика состоит в анализе дисперсии изучаемого показателя y:

Критерий фишера для проверки значимости уравнения регрессии

Критерий фишера для проверки значимости уравнения регрессииобщая сумма квадратов отклонений (TSS)

Критерий фишера для проверки значимости уравнения регрессиисумма квадратов отклонений, обусловленная регрессией (RSS)

Критерий фишера для проверки значимости уравнения регрессииостаточная сумма квадратов отклонений (ESS)

Долю дисперсии, обусловленную регрессией, в общей дисперсии показателя у характеризует коэффициент детерминации R, который должен превышать 50% (R 2 > 0,5). В контрольных по эконометрике в ВУЗах этот показатель рассчитывается всегда.

🌟 Видео

✓ Свойства функций, непрерывных на отрезке. Теоремы Вейерштрасса и Коши | матан #022 | Борис ТрушинСкачать

✓ Свойства функций, непрерывных на отрезке. Теоремы Вейерштрасса и Коши | матан #022 | Борис Трушин

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий ФишераСкачать

Однофакторная регрессионная модель. Коэффициенты детерминации, корреляции. Критерий Фишера

12-05 Информация Фишера и свойства ММП оценокСкачать

12-05 Информация Фишера и свойства ММП оценок

Проверка гипотезы о значимости коэффициентов уравнения регрессииСкачать

Проверка гипотезы о значимости коэффициентов уравнения регрессии

Пример проверки гипотезы о незначимости регрессииСкачать

Пример проверки гипотезы о незначимости регрессии

t-критерий Стьюдента для проверки гипотезы о средней в MS ExcelСкачать

t-критерий Стьюдента для проверки гипотезы о средней в MS Excel

Линейная регрессия в Python за 13 МИН для чайников [#Машинное Обучения от 16 летнего Школьника]Скачать

Линейная регрессия в Python за 13 МИН для чайников [#Машинное Обучения от 16 летнего Школьника]

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)

Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Эконометрика. Точечный и интервальный прогнозы.Скачать

Эконометрика. Точечный и интервальный прогнозы.
Поделиться или сохранить к себе: