Применяя общие законы физики, можно составить дифференциальные уравнения для конвективного теплообмена, учитывающие как тепловые, так и гидродинамические явления в любом процессе.
Система дифференциальных уравнений состоит из 6 уравнений: энергии (или теплопроводности), теплообмена, движения (3 уравнения) и уравнение сплошности.
В результате анализа этих уравнений получены критерии подобия и критериальные уравнения, которые используются при исследовании конвективного теплообмена.
Критериальным уравнением называют зависимость между каким-либо определяемым критерием подобия и другими определяющими критериями подобия.
При расчете тепловых аппаратов искомыми величинами являются коэффициент теплоотдачи и гидравлическое сопротивление
. Конвективный теплообмен характеризуется пятью критериями подобия – Nu, Eu, Pr, Gr и Re.
Критерий Нуссельта (Nu) содержит искомый коэффициент теплоотдачи , а критерий Эйлера (Eu) – искомую величину
, характеризующую гидравлическое сопротивление при движении жидкости. Поэтому критерии Nu и Eu являются определяемыми критериями подобия, а критерии Прандтля (Pr), Грасгофа (Gr) и Рейнольдса (Re) – определяющими.
При конвективном теплообмене критериальные уравнения могут быть представлены в следующем виде:
(4.6)
(4.7)
Зависимость между критериями в основном определяется опытным путем.
В случае вынужденного движения жидкости и при развитом турбулентном режиме свободная конвекция в сравнении с вынужденной очень мала, поэтому критериальное уравнение теплоотдачи упрощается:
(4.8)
Для некоторых газов величина критерия Прандтля в процессе конвективного теплообмена почти не изменяется с температурой, поэтому критериальное уравнение принимает более простой вид:
(4.9)
При свободном движении жидкости, когда вынужденная конвекция отсутствует, вместо критерия Рейнольдса в критериальное уравнение теплоотдачи необходимо ввести критерий Грасгофа. При этом получается зависимость:
(4.10)
При исследовании теплообмена капельных жидкостей и газов со стенкой оказывается, что теплоотдача будет различной в условиях нагревания и охлаждения. Это явление связано с изменением физических параметров жидкости в пограничном слое. Для получения критериальных уравнений, одинаково справедливых как для нагревания, так и для охлаждения, вводят дополнительно отношения:
,
,
. (4.11)
Первое соотношение обычно применяют при расчете теплоотдачи газов, остальные два – при расчете теплоотдачи капельных жидкостей.
Академик М.А. Михеев рекомендует учитывать направление теплового потока отношением . Тогда общее критериальное уравнение для конвективного теплообмена принимает следующий вид:
(4.12)
В такой же форме можно представить все уравнения для частных случаев. Количественная связь между критериями подобия и является предметом экспериментальных исследований.
Вопросы для самоконтроля к разделу 4
1. Что называется конвективным теплообменом?
2. Какие различают виды конвекции?
3. Гидродинамический и тепловой пограничные слои и их физический смысл.
4. Какие встречаются виды движения жидкости и их различие?
5. Критерий Рейнольдса и его обозначение.
6. Какова размерность критерия Рейнольдса?
7. Критическое значение критерия Рейнольдса.
8. Каков механизм передачи теплоты при ламинарном и турбулентном движении
9. Дать определение динамической и кинематической вязкости.
10. Какие факторы влияют на конвективный теплообмен?
11. Определение коэффициента теплоотдачи.
12. Функцией каких величин является коэффициент теплоотдачи?
13. Что называется условиями однозначности?
14. Почему для определения коэффициента теплоотдачи применяют теорию
15. Какие условия лежат в основе теории подобия?
16. От каких величин зависит коэффициент теплоотдачи?
17. Какие критерии подобия получают из дифференциальных уравнений
18. Какое уравнение называется критериальным?
19. Какими критериями подобия характеризуется конвективный теплообмен
Видео:Методы исследования технологических процессов. Теория подобия. Виды подобияСкачать
Теория подобия и критериальные уравнения
Конвективный теплообмен описывается системой дифференциальных уравнений и условиями однозначности с большим количеством переменных. Попытки аналитического решения полной системы уравнений наталкиваются на серьезные трудности. Поэтому большое значение приобретает экспериментальный путь исследования. Однако при изучении столь сложного процесса, как конвективный теплообмен, не всегда легко проводить и опытное исследование.
Для исследования влияния на процесс какой-либо одной величины остальные нужно сохранять неизменными, что не всегда возможно или затруднительно из-за большого количества переменных. Кроме того, нужно быть уверенным, что результаты, получаемые с помощью какой-либо конкретной установки (модели), можно перенести и на другие аналогичные процессы (образец). Эти трудности помогает разрешить теория подобия. С помощью теории подобия размерные физические величины можно объединить в безразмерные комплексы, причем так, что число комплексов будет меньше числа величин. Полученные безразмерные комплексы можно рассматривать как новые переменные.
При введении в уравнения безразмерных комплексов число величин под знаком искомой функции формально сокращается, что упрощает исследование физических процессов.
Теория подобия устанавливает также условия, при которых результаты лабораторных исследований можно распространить на другие явления, подобные рассматриваемому. Ввиду этого теория подобия является теоретической базой эксперимента, но не только. Теория подобия является важным подспорьем теоретических исследований. Хотя методами теории подобия вид искомой функции не может быть определен, эта теория облегчает в ряде случаев анализ процесса и описание полученных результатов.
Для практического использования выводов теории подобия необходимо уметь приводить к безразмерному виду математические описания изучаемых процессов.
Имеется несколько методов, и один из них — метод масштабных преобразований.
независимые переменные: х, у.
зависимые переменные:
постоянные величины: и др. Для определенной задачи они являются постоянными.
Таким образом, искомые зависимые переменные зависят от большого числа величин: они являются функцией независимых переменных и постоянных величин.
В качестве масштабов удобно принять постоянные величины .
;
;
;
;
, тогда
;
;
;
;
.
Помимо безразмерных величин и безразмерных координат X, Y, составленных из однородных физических величин, в уравнения входят также безразмерные комплексы, состоящие из разнородных физических величин.
Безразмерные соотношения параметров характеризующих процесс, имеющие у подобных явлений в сходственных точках численно одинаковые значения называются числами подобия.
1). У подобных явлений числа подобия численно одинаковы.
2). Интеграл дифференциальной функции (или системы уравнений) может быть представлен как функция чисел дифференциального уравнения.
3). Подобны те явления, условия однозначности которых подобны, и числа подобия, составленные из условия однозначности, численно одинаковы.
Условия однозначности: Явление, протекающее в геометрически подобных системах; для рассматривания явления можно составить дифференциальные уравнения; установлены существование и единственность решения уравнений при заданных граничных условиях; известны числовые значения коэффициентов и физических параметров.
Видео:Основы теории подобияСкачать
Реферат: Основы теории подобия (метод обобщенных переменных)
Основы теории подобия (метод обобщенных переменных)
Методы исследования технологических процессов
Теория подобия. Виды подобия
Основные положения теории подобия (теоремы подобия)
Методы исследования технологических процессов
Исследования процессов, протекающих в технологических установках, установление закономерностей их протекания, нахождение зависимостей, необходимых для их анализа и расчета, можно проводить разными методами: теоретическим, экспериментальным, подобия.
Теоретический метод основан на составлении и решении системы дифференциальных уравнений, описывающих процесс. Дифференциальные уравнения описывают целый класс однородных по своей сущности явлений (процессов), поэтому для выделения конкретного явления необходимо ввести определенные ограничения, которые однозначно будут характеризовать данное явление. Эти дополнительные условия называются условиями однозначности. Условия однозначности включают в себя: геометрическую форму и размеры системы, т.е. аппарата, канала и т.д.; физические свойства веществ, участвующих в процессе; начальные условия (начальную температуру, начальную скорость и т.д.); граничные условия, например скорость жидкости у стенок канала, равную нулю.
Однако многие процессы химической технологии так сложны, что удается лишь составить систему дифференциальных уравнений и установить условия однозначности. Решить эти уравнения известными в математике методами не представляется возможным.
Экспериментальный метод позволяет на основе опытных данных получить эмпирические уравнения, описывающие данный процесс. Сложности экспериментального метода заключаются в необходимости проведения большого количества опытов на реальных технологических установках. Это связано с большими затратами средств и времени. Вместе с тем результаты проведенных экспериментов будут справедливы только для тех условий, для которых они получены, и не могут быть с достаточной надежностью перенесены на процессы, аналогичные изученным, но протекающие в других аппаратах.
Метод теории подобия позволяет с достаточной для практики точностью изучать сложные процессы на более простых моделях, обобщать результаты опытов и получать закономерности, справедливые не только для данного процесса, но и для всей группы подобных процессов. При моделировании процессов можно вместо дорогостоящих трудоемких опытов на промышленных установках проводить исследования на моделях значительно меньших размеров, а вместо зачастую опасных и вредных веществ использовать безопасные модельные вещества, опыты проводить в условиях, отличных от производственных. Кроме того, материальную модель можно заменить физической схемой (моделью), отражающей существенные особенности данного процесса. Поэтому в данном учебном пособии наиболее подробно будет рассмотрена теория подобия.
Теория подобия. Виды подобия
Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессы движения жидкостей, диффузии, теплопроводности и т.п.), группы подобных явлений.
Подобными называются такие явления, для которых отношения сходственных и характеризующих их величин постоянны.
Различают следующие виды подобия: геометрическое; временное; физических величин; начальных и граничных условий.
Геометрическое подобие соблюдается при равенстве отношений всех сходственных линейных размеров натуры и модели. Например, при изучении движения жидкости в канале длиной L , диаметром D . В модели сходственные размеры равныl и d . Тогда
Безразмерная величина k (а в Дытнерском), называется константой геометрического подобия , или масштабным (переходным) множителем . Константы подобия характеризуют отношение однородных сходственных величин в подобных системах и позволяют перейти от размеров одной системы (модели) к другой (натуре).
Временное подобие предполагает, что сходственные частицы в геометрически подобных системах, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути за промежутки времени, отношение которых является константой подобия kх , т.е.
(1)
На рис.1. изображен канал (натура) с размерами L и D и модель с размерами l и d . Некая частица в точке А (натура) находится в момент времени τА , в точке В — в момент времени τв . В геометрически подобной модели сходственная частица находится в подобной точке а в момент времени τа , в точке b— в момент времени τ b .
Рис. 1. Условия подобия в натуре (a) и в модели (б)
теория подобие переменная обобщенный
При соблюдении геометрического и временного подобия константа подобия скоростей kυ определяется из соотношений
(2)
Подобие физических величин предполагает, что для двух любых сходственных точек натуры и модели, размещенных подобно в пространстве и во времени, соотношение физических величин (μ,ρи т.д.) является величиной постоянной:
(3)
Подобие начальных и граничных условий заключается в том, что для начальных и граничных условий должно соблюдаться геометрическое, временное и физическое подобие так же, как и для других сходственных точек натуры и модели.
Рассмотренные константы подобия постоянны для различных сходственных точек подобных систем, но могут изменяться в зависимости от соотношения размеров натуры и модели, т. е. если имеется другая модель, подобная натуре, константы подобия будут другими.
Если подобные величины выразить в относительных единицах, т.е. в виде отношений сходственных величин в пределах одной системы (натуры или модели), то получим инварианты подобия:
(4)
Инварианты подобия не зависят от соотношения размеров натуры и модели, т.е. для всех моделей, подобных натуре, они будут одни и те же. Инварианты подобия, представляющие собой отношение однородных величин, называются симплексами, или параметрическими критериями , например отношение L / D — геометрический симплекс.
Инварианты подобия, выраженные отношением разнородных величин, называются критериями подобия. Критерии подобия обозначаются начальными буквами имен ученых, которые внесли большой вклад в развитие данной области знаний.
Критерии подобия безразмерны, их значения для разных точек системы могут быть различными, но для сходственных точек подобных систем они одинаковые и не зависят от относительных размеров натуры и модели.
Критерии подобия имеют физический смысл, являясь мерами соотношения между какими-то двумя эффектами, силами и т.п., оказывающими влияние на протекание данного процесса.
Критерии подобия могут быть получены для любого процесса, если известны уравнения, описывающие этот процесс.
Основные положения теории подобия (теоремы подобия)
Основные положения теории подобия заключены в теоремах подобия, которые лежат в основе практического применения теории подобия.
Первая теорема подобия( теорема Ньютон-Бертрана): подобные явления характеризуются численно равными критериями подобия .
Теорема была сформулирована Ньютоном. Она устанавливает, что единственным количественным условием подобия процессов является равенство критериев подобия натуры и модели.
Отсюда очевидно, что отношение критериев одной системы (натуры) к критериям другой подобной ей системы (модели) всегда равно 1. Например,
Если отношение констант подобия равно 1, оно носит название индикатора подобия и указывает на равенство критериев подобия.
Следовательно, у подобных явлений индикаторы подобия равны 1.
Первая теорема подобия указывает, какие величины следует измерять при проведении опытов, результаты которых требуется обобщить: надо измерять те величины, которые входят в критерии подобия.
Вторая теорема подобия (теорема Бэкингем-Федермана): решение любого дифференциального уравнения, связывающего между собой переменные, влияющие на процесс, может быть представлено в виде зависимости между критериями К подобия. Такие уравнения называются уравнениями обобщенных переменных , или критериальными уравнениями , например
Обычно критериальное уравнение записывается в виде зависимости определяемого критерия подобия от определяющих критериев подобия:
где А, т, п — эмпирические показатели.
Определяемым критерием является тот критерий, в который входит определяемая величина. Критерии, в которые входят величины, определяющие ход процесса (v ,μ,ρ, d э и т.д.), называются определяющими .
Если какой-либо эффект в исследуемом процессе мало влияет на его протекание, то критерии подобия, характеризующие интенсивность данного эффекта, могут не учитываться. В этом случае процесс по отношению к этому эффекту и к критерию подобия становится автомодельным , т.е. независимым. В соответствии с этой теоремой результаты эксперимента, проведенного на модели, можно представлять в виде критериальных уравнений.
Третья теорема подобия (теорема Киринчен-Гухмана): явления подобны, если их определяющие критерии равны.
Следствием равенства определяющих критериев подобия является равенство и определяемых критериев для натуры и модели, поэтому полученная на модели в результате опытов критериальная зависимость будет справедлива для всех подобных процессов, в том числе и для протекающих в промышленной установке. При этом следует учитывать, что полученные уравнения надежно можно использовать только в тех интервалах изменения переменных, которые были использованы при проведении опытов.
Таким образом, для исследования технологических процессов методом подобия необходимо:
1. выбрать дифференциальное уравнение и условия однозначности, описывающие данный процесс; затем путем преобразования найти критерии подобия;
2. опытным путем с помощью моделей установить зависимость между критериями подобия; полученное обобщенное уравнение будет справедливым для всех подобных процессов в пределах изменения определяющих критериев подобия.
Преобразование дифференциальных уравнений методом теории подобия проводится в следующем порядке:
1. каждый из членов дифференциального уравнения умножается на соответствующие константы подобия кτ , кv , кl ит.д.;
2. полученные коэффициенты перед членами уравнения для соблюдения тождественности приравниваются;
3. в полученных индикаторах подобия константы подобия заменяются соответствующими отношениями величин, и полученные комплексы являются критериями подобия.
В табл. 1 приведены основные критерии гидродинамического подобия, которые будут равны для сходственных точек натуры и модели, если они подобны.
Таблица 1 — Основные критерии гидродинамического подобия
Название: Основы теории подобия (метод обобщенных переменных) Раздел: Рефераты по экономико-математическому моделированию Тип: реферат Добавлен 03:53:33 03 июня 2011 Похожие работы Просмотров: 9858 Комментариев: 23 Оценило: 7 человек Средний балл: 4.1 Оценка: 4 Скачать |
l — определяющий размер, м;
μ — динамическая вязкость, Па-с;
ν — кинематическая вязкость, м 2 /с;
g — ускорение свободного падения, м/с 2 ;
Критерий | Выражение критерия | Характеристика критериев | Единицы измерения входящих в критерии подобия величин |
Кинематический (критерий Рейнольдса) | Rе=υl/ν= υlρ/μ | Характеризует меру соотношения сил инерции и сил трения | |
Гравитационный (критерий Фруда) | Fr =υ 2 /gl | Характеризует меру соотношения сил инерции и сил тяжести | |
Гидравлического сопротивления (критерий Эйлера) | Еu =∆p/ρ υ 2 | Характеризует меру соотношения сил гидростатического давления и сил инерции | |
Гомохронности | Но =υ τ/l | Характеризует неустановившееся движение жидкости |
Таким образом, дифференциальное уравнение Навье — Стокса, описывающее движение вязкой жидкости, может быть представлено в виде критериального уравнения:
f (Rе, Но, Fr, Еu) = 0 (8)
Уравнение (8) является обобщенным критериальным уравнением гидродинамики. Все критерии уравнения (8), кроме критерия Ей, являются определяющими, так как они составлены из величин, входящих в условия однозначности. Критерий Эйлера, в который входит величина ∆р, являющаяся целью расчета, будет определяемым критерием.
Еu = f (Rе, Но, Fr) или
Еu = AНо с Rе т Fr п , (9)
где А,c,т,п- эмпирические показатели.
В ряде случаев уравнение (19) дополняют геометрическим симплексом l / d :
Еu = AНо с Rе т Fr п (l / d ) b , (10)
где b- эмпирический показатель.
При установившемся движении критерий Но исключается из критериального уравнения:
Еu = ARе т Fr п (l / d ) b . (11)
В случае, если скорость движения жидкости не определена, в расчеты вводят производные или модифицированные критерии подобия, составленные из основных критериев. В этих критериях подобия неизвестная величина υ заменяется другими величинами, которые сравнительно легко определяются экспериментально или аналитически.
Возьмем отношение критериев Rе и Fr:
(12)
Полученный безразмерный комплекс величин называется критерием Галилея. Если умножить этот критерий на отношение ( ρ 1 — ρ 2 )/ ρ 2 , то получается новый критерий подобия — критерий Архимеда
(13)
где ρ 1 , ρ 2 — плотности жидкости в разных точках, кг/м 3 .
💡 Видео
Подобие процессов конвективного теплообменаСкачать
Лекция по теплофизике. 26.04.2021Скачать
Термодинамика Л31. 2024. Конвективный тепломассообмен. Критерии подобия. Лучистый теплообменСкачать
Лекция 1.4 Оcновы теории подобия. Критериальные параметры.Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Тепловое и массообменное подобиеСкачать
Л2 - Конвективный теплообмен.Скачать
Жмакин В.А. Лекция №4 «Научные исследования на физических моделях. Физическое моделирование»Скачать
Моделирование химико-технологических процессов. Часть 3. Уровень: базовый.Скачать
1 Лекция МиОЭП 8 семестр 15.02.2021Скачать
Физическое моделирование Гидродинамическое подобиеСкачать
Единую Метафизику Целевых Потоков Целостного Движения (Электронных, Когнитивных) квантует ПервеансСкачать
Краткие пояснения к лекции от 10 сентябряСкачать
Урок 138. Число Рейнольдса. Критерий Рейнольдса.Скачать
Основы конвективного теплообменаСкачать
Деловое СкороМышление от Математики: Матрица 3х3 Пифагора, СКВ Кибальникова, Целевая ФункцияСкачать
8 класс, 22 урок, Первый признак подобия треугольниковСкачать
Объяснение некоторых вопросов тестаСкачать