Цели. Сформировать представления о коррозии с точки зрения окислительно-восстановительных процессов; показать значение коррозии для народного хозяйства; продолжить формирование у учащихся умений устанавливать причинно-следственные связи между строением и свойствами металлов.
Оборудование. Железные гвозди из поставленных ранее опытов по их коррозии в водопроводной воде и «морской» воде (гвоздь без контакта с другим металлом и гвозди в контакте с медью и цинком). (Эксперимент мог быть домашним заданием.)
Коррозия вызывается окислительно-восстановительными реакциями, в которых металл в результате взаимодействия с каким-либо веществом из своего окружения превращается в нежелательное соединение. Одним из наиболее известных коррозионных процессов является ржавление железа. 20% железа, производимого ежегодно в США, идет на замену железных изделий, пришедших в негодность из-за ржавления.
Различают несколько видов коррозии.
А. По площади и характеру поражения: сплошная, точечная, язвенная, межкристаллическая.
Б. По природе агрессивных сред:воздушная, почвенная, морская, биологическая (вызванная водорослями, моллюсками, плесенью), коррозия в смазке, газовая.
В. По механизму возникновения:химическая, электрохимическая, электрическая (под действием блуждающих токов).
Видео:Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать
Химическая коррозия
При химической коррозии идет окисление металла без возникновения цепи электрического тока:
Для поверхности алюминия этот процесс благоприятен, т.к. оксидная пленка плотно прилегает к поверхности металла и нет дальнейшего допуска кислорода к металлу.
Почему не рекомендуют варить овощи в алюминиевой посуде? (Кислая среда растворяет оксидную пленку, и алюминий в виде солей поступает в организм человека.)
Оксидная пленка железа очень рыхлая (вспомните какой-либо ржавый предмет – как только вы берете его в руки, остаются следы ржавчины) и не прилегает плотно к поверхности металла, поэтому кислород проникает все дальше и дальше, коррозия идет до полного разрушения предмета.
При электрохимической коррозии возникает электрическая цепь. При этом могут быть случаи коррозии как одного металла, так и металлов в контакте. Для возникновения электрохимической коррозии нужно наличие кислорода и воды.
Рассмотрим случай, когда контакта металлов нет, причем металл (железо) находится в воздухе.
Некоторые участки поверхности железа служат анодом, на котором происходит его окисление (E° – стандартный электродный потенциал):
Fe (тв.) = Fe 2+ (водн.) + 2e, E °окисл = 0,44 B.
Образующиеся при этом электроны перемещаются по металлу к другим участкам поверхности, которые играют роль катода. На них происходит восстановление кислорода:
Этот процесс иллюстрируется на рис. 1.
Рис. 1. Схема электрохимической коррозии железа без контакта с другими металлами
В восстановлении кислорода участвуют ионы Н + . Если концентрация Н + понижается (при повышении рН), восстановление О2 затрудняется. Замечено, что железо, находящееся в контакте с раствором, рН которого выше 9–10, не корродирует.
В процессе коррозии образующиеся на аноде ионы Fe 2+ окисляются до Fe 3+ :
Поскольку роль катода обычно играет та часть поверхности, которая лучше всего обеспечена притоком кислорода, ржавчина чаще всего появляется именно на этих участках. Если вы внимательно осмотрите лопату, простоявшую некоторое время на открытом воздухе с налипшей на лезвии грязью, то заметите, что под грязью на поверхности металла образовались углубления, а ржавчина появилась повсюду, куда мог проникнуть О2.
С усилением коррозии в присутствии солей часто сталкиваются автомобилисты в тех местностях, где в зимнее время для борьбы с гололедицей дороги обильно посыпают солью. Влияние солей объясняется тем, что образуемые ионы создают электролит, необходимый для возникновения замкнутой электрической цепи.
Наличие анодного и катодного участков на поверхности железа приводит к созданию на ней двух неодинаковых химических окружений. Они могут возникнуть вследствие присутствия примесей или дефектов в кристаллической решетке (по-видимому, обусловленных напряжением внутри металла). В местах, где есть примеси или дефекты, микроскопическое окружение конкретного атома железа может вызвать некоторое увеличение или уменьшение его степени окисления по сравнению с «нормальными» атомами в кристаллической решетке. Поэтому такие места способны играть роль анодов или катодов. Сверхчистое железо, в котором количество подобных дефектов сведено к минимуму, намного меньше корродирует по сравнению с обычным железом.
Кутубская колонна в Индии
Классический пример – знаменитая Кутубская колонна в Индии близ Дели, которая уже почти полторы тысячи лет стоит и не разрушается, несмотря на жаркий и влажный климат. Сделана она из железа, в котором почти нет примесей. Как удалось древним металлургам получить такой чистый металл, до сих пор остается загадкой.
В начале прошлого столетия по заказу одного американского миллионера была построена роскошная яхта «Зов моря». Днище ее было обшито монель-металлом (сплав меди и никеля), а рама руля, киль и другие детали были изготовлены из стали. Когда яхту спустили на воду, возник гигантский гальванический элемент, состоящий из катода (монель-металла), стального анода и раствора электролита – морской воды.
Последствия были ужасными! Еще до выхода в открытое море яхта полностью вышла из строя, так что «Зов моря» остался в истории мореплавания как пример конструкторской недальновидности и самонадеянного невежества. Попробуем разобраться, что же произошло.
Рассмотрим контакт двух металлов на примере олова и железа.
Железо часто покрывают другим металлом, например оловом, цинком или хромом, чтобы защитить от коррозии. Так называемую «белую жесть» получают, покрывая тонким слоем олова листовое железо. Олово защищает железо до тех пор, пока защитный слой остается неповрежденным. Стоит его повредить, как на железо начинают воздействовать воздух и влага, олово даже ускоряет процесс коррозии, потому что служит катодом в электрохимическом процессе. Сравнение окислительных электродных потенциалов железа и олова показывает, что железо окисляется легче олова:
Fe (тв.) = Fe 2+ (водн.) + 2e, E °окисл = 0,44 B,
Sn (тв.) = Sn 2+ (водн.) + 2e, E °окисл = 0,14 B.
Поэтому железо служит в этом случае анодом и окисляется, как показано на рис. 2.
Рис. 2. Схема электрохимической коррозии при контакте железа и олова
Оцинкованное железо получают, покрывая его тонким слоем цинка. Цинк защищает железо от коррозии даже после нарушения целостности покрытия. В этом случае железо в процессе коррозии играет роль катода, потому что цинк окисляется легче железа (рис. 3):
Zn (тв.) = Zn 2+ (водн.) + 2e, E °окисл = 0,76 B.
Следовательно, цинк играет роль анода и корродирует вместо железа.
Рис. 3. Схема электрохимической коррозии при контакте железа и цинка
Блуждающие токи, исходящие от трамвая, метро, электрических железных дорог и различных электроустановок, работающих на постоянном токе, вызывают электрокоррозию. Такие токи разрушают подземные металлические сооружения, трубопроводы, электрокабели, приводят к появлению на металлических предметах, находящихся в земле, участков входа и выхода постоянного тока. Вследствие этого на металле образуются катодные и анодные зоны, причем анодные зоны, т.е. места выхода тока, подвергаются коррозии (рис. 4).
Рис. 4. Схема электрокоррозии под действием блуждающих токов: 1 – провод; 2 – рельс; 3 – влажный грунт; 4 – труба; 5 – электродвигатель трамвая; 6 – сопротивление в стыке рельса
Блуждающие токи достигают 300 А и действуют в радиусе нескольких десятков километров. Процесс в анодных зонах:
Процессы в катодных зонах:
Блуждающие токи от источников переменного тока вызывают слабую коррозию у подземных изделий из стали и сильную у изделий из цветных металлов.
Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери от коррозии железа составляют около 10% от его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства.
Ежегодные потери металла при коррозии оборудования, используемого только в животноводстве, составляют около 60 тыс. тонн. Поэтому защита металлов от коррозии – очень важная задача.
1. Защищаемый металл играет роль катода. Такой способ защиты называется катодным (другое название – протекторная защита). Тот металл, который заведомо будет разрушаться в паре, называется протектором. Примеры такой защиты – оцинкованное железо (железо – катод, цинк – анод), «белая жесть» (оловом покрывают листовое железо), контакт магния и железа (магний – протектор). Магниевый анод окружают смесью гипса, сульфата натрия и глины, чтобы обеспечить проводимость ионов. Труба играет роль катода в гальваническом элементе (рис. 5).
Рис. 5. Катодная защита железных водопроводных труб
2. Электрозащита. Конструкция, находящаяся в среде электролита, соединяется с другим металлом (обычно куском железа, рельсом и т.п.), но через внешний источник тока. При этом защищаемую конструкцию подключают к катоду, а металл – к аноду источника тока. В этом случае электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя. Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй – 50 м.
3. Если металл, например хром, создает плотную оксидную пленку, его добавляют в железо, и образуется сплав – нержавеющая сталь. Такие стали называются легированными.
Многие сплавы, которые содержат незначительное количество добавок дорогих и редких металлов, приобретают замечательную устойчивость к коррозии и прекрасные механические свойства. Например, добавки родия или иридия к платине так сильно повышают ее твердость, что изделия из нее – лабораторная посуда, детали машин для получения стекловолокна – становятся практически вечными.
4. Металл можно пассивировать – обработать его поверхность так, чтобы образовалась тонкая и плотная пленка оксида, которая препятствует разрушению основного вещества. Например, концентрированную серную кислоту можно перевозить в стальных цистернах, т.к. она образует на поверхности металла тонкую, но очень прочную пленку.
5. Ингибиторы (замедлители) коррозии тоже переводят металл в пассивное состояние, образуя на его поверхности тонкие защитные пленки. Пример такого замедлителя коррозии – гексаметилентетрамин (CH2)6N4. В последние годы разработаны летучие, или атмосферные, ингибиторы. Ими пропитывают бумагу, которой обертывают металлические изделия. Пары ингибиторов адсорбируются на поверхности металла и образуют на ней защитную пленку.
6. Защитить металл можно, препятствуя проникновению к нему влаги и кислорода, – например, нанося на металл слой краски или лака. (На покраску Эйфелевой башни уже затратили средств больше, чем при ее создании.)
ПРАКТИЧЕСКАЯ РАБОТА
За неделю до урока были поставлены опыты по коррозии металлов в пробирках с водопроводной (№ 1–4) и «морской» (№ 5–8) водой (рис. 6).
Рис. 6. Гвозди, помещенные в водопроводную (пробирки с темными крышками) и «морскую» (пробирки со светлыми крышками) воду
№ 2 и № 6 – железный гвоздь в контакте с цинком;
№ 3 и № 7 – железный гвоздь в контакте с медью;
№ 4 и № 8 – железный гвоздь, покрытый лаком для ногтей.
«Морскую» воду готовят, растворяя в ней соли кальция, магния и натрия.
Рис. 7 демонстрирует результаты опытов по коррозии металлов в «морской» воде.
Рис. 7. Гвозди, вынутые через неделю из «морской» воды
№ 6 – гвоздь не подвергся коррозии, но цинк уменьшился в размере;
№ 7 – наличие сильной ржавчины, гвоздь уменьшился в размере;
№ 8 – гвоздь не подвергся коррозии (покрыт лаком).
1. Рассмотрите коррозию железа в водопроводной и «морской» воде (пробирки № 1 и № 5). Где процесс протекает быстрее и чем вы это объясните?
(П р и м е р н ы й о т в е т. В «морской» воде более заметно выражены все проявления коррозии из-за агрессивности среды, которая создается растворимыми солями (гидролиз солей).)
2. Сравните результаты опытов по коррозии при контакте железа и цинка в водопроводной и «морской» воде (пробирки № 2 и № 6).
(П р и м е р н ы й о т в е т.При контакте железа с цинком явление коррозии железа практически не выражено. В данном случае электрохимическая коррозия затронула цинк, как более активный металл.)
3. Сравните результаты опытов по коррозии при контакте железа и медной проволоки в водопроводной и «морской» воде (пробирки № 3 и № 7).
(П р и м е р н ы й о т в е т.При контакте железа с медью усиливается разрушение железа вследствие электрохимической коррозии, т. к. железо более активный металл, чем медь (в электрохимическом ряду напряжений металлов железо стоит левее меди).)
4. Зарисуйте результаты опытов. Используя рис. 1–3, составьте схемы реакций, происходящих в каждом опыте.
1. Напишите схему коррозии на яхте «Зов моря».
2. Поставьте опыты по коррозии железных гвоздей в «Фанте» и в растворе соды. Через неделю принесите гвозди в школу, чтобы обсудить результаты опытов.
3. Рассмотрите процесс коррозии при соединении медной трубы с гальванизированной (оцинкованной) стальной трубой, если обе трубы находятся в земле.
4. Как будет протекать процесс коррозии в том случае, если железную водосточную трубу прибить к дому алюминиевыми гвоздями?
(О т в е т. В местах соприкосновения двух металлов образуется гальванический элемент. Металл, который окисляется легче, играет при этом роль анода, а второй металл – роль катода. Из сравнения стандартных электродных потенциалов алюминия и железа следует, что алюминий будет играть роль анода. Таким образом, вблизи алюминиевого гвоздя водосточная труба будет защищена от коррозии, потому что железо в этой паре играет роль катода. Однако алюминиевый гвоздь в этих условиях быстро корродирует, и в конце концов труба упадет.)
5. Почему цинк не используют при изготовлении консервных банок для покрытия им железа?
(О т в е т. Цинк менее пригоден, чем олово, при изготовлении консервных банок, т. к. расположен левее олова в ряду напряжений металлов, поэтому цинк легче подвергается действию кислот, содержащихся во фруктовых соках.)
Литература
Маршанова Г.Л. 500 задач по химии. М.: Издат-школа «РАЙЛ», 1997; Хомченко Г.П., Цитович И.Г. Неорганическая химия, М.: Высшая школа, 1987; Фримантл М. Химия в действии. М.: Мир, 1991; Браун Т., Лемей Г.Ю. Химия в центре наук. М.: Мир, 1983; Химия. Пособие-репетитор. Под ред. А.С.Егорова. Ростов-на-Дону: Феникс, 1996; Венецкий С.И. Рассказы о металлах. М.: Металлургия, 1986.
Электрохимические процессы на электродах при коррозии металла
Видео:Коррозия металлов и способы защиты от нееСкачать
Схема развития коррозии поверхности корпуса судна
Задача 139. На окрашенной поверхности корпуса судна, имеющий дефекты в покрытии, коррозионный ток сосредоточен на поврежденных участках. Составьте схему развития коррозии, а так же рассчитайте потерю металла за месяц если сила коррозионого тока, с учетом зоны действия составила 0,05 А. Решение: Анодный процесс:
Fe 0 — 2 = Fe 2+
Катодный процесс в нейтральной среде:
1/2O2 + H2O + 2 = 2OH –
Так как ионы Fe 2+ с гидроксид-ионами OH – образуют нерастворимый гидроксид, то продуктом коррозии будет Fe(OH)2. Воздух окисляет его и образуется ржавчина, гидратированный оксид железа(III):
По формуле объединенного закона электролиза:
m = Э . I . t/F = М . I . t/n.F = K . I . t, где
Э – эквивалентная масса вещества (молярная масса эквивалента); F– постоянная Фарадея, равная 96500 Кл/моль или 96500 А.с/моль;. I – сила тока, А; t – время проведения электролиза, с; М – молярная масса вещества; n – число отданных или принятых электронов; К – электрохимический эквивалент вещества. Рассчитаем потерю металла, получим:
Металлы, которые применяются дла катодного покрытия стали
Задача 140. Какие металлы могут выполнять для стальных изделий роль катодных покрытий: Ni, Cr, Mn, Sn, Cu? Запишите схему коррозии никелированного железа и определите продукт коррозии во влажном воздухе? Решение: К катодным покрытиям относятся те металлы, у которых потенциал выше потенциала защищаемого металла. Анодными покрытиями являются металлы, у которых электродный потенциал в данных условиях более отрицателен, чем потенциал защищаемого металла. По таблицам найдем стандартные электродные потенциалы: Fe (-0,441 В); Ni (-0,234 B), Cr (-0,74 B), Mn (-1,18 B), Sn (-0,141 B), Cu (+0,338 B). Так как у никеля, олова и меди электродные потенциалы выше чем у железа, то эти металлы могут выполнять для стальных изделий роль катодных покрытий.
Схема коррозии никелированного железа
При покрытии железа никелем возникает коррозионная пара, в которой никель является катодом, а железо – анодом, так как железо имеет более отрицательный потенциал (-0,441 В), чем никель (0,234 В). При этом будут протекать следующие электрохимические процессы:
а) Во влажном воздухе:
Анодный процесс: Fe 0 -2 = Fe 2+ Катодный процесс: 1/2O2 + H2O + 2 = 2OH – Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:
б) В растворе кислоты:
Анодный процесс: Fe 0 -2 = Fe 2+ Катодный процесс: 2Н + + 2 = Н2↑
Водород будет выделяться во внешнюю среду, а ионы железа Fe 2+ с кислотными ионами будут образовывать соль, т. е. железо будет разрушаться с образованием ионов железа Fe 2+ .
Таким образом, при покрытии железа никелем при повреждении или при образовании пор разрушается основной металл – железо. Это пример катодного покрытия металла.
Коррозия железа в кислой среде
Задача 141. В раствор хлороводородной (соляной) кислоты опустили железную пластинку и железную пластинку, частично покрытую никелем. В каком случае процесс коррозии железа протекает интенсивно? Составьте схемы коррозионных гальванических элементов и напишите электронные уравнения электродных процессов. Рассчитайте ЭДС гальванических элементов. Решение: Стандартные электродные потенциалы железа и никеля равны соответственно -0,44 В, -0,24 В.
а) Коррозия железной пластинки в растворе соляной кислоты
Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем водород (0,00 В), поэтому оно является анодом. Электронные уравнения электродных процессов будут иметь вид:
Анод: Fе 0 – 2 = Fe 2+ Катод: 2Н + + 2 = Н2↑
Fe 0 + 2H + = Fe 2+ + H2↑
Так как ионы Fe 2+ с ионами Cl – образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:
Fe 2+ + 2Cl¯ = FeCl2 (ионная форма); Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).
Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки. Схема коррозионного гальванического элемента будет иметь вид:
или в ионном виде:
б) Коррозия никелированного железа в растворе соляной кислоты
Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем никель (-0,24 В), поэтому оно является анодом, а никель — катодом. Электронные уравнения электродных процессов будут иметь вид:
Анод: Fе 0 – 2 = Fe 2+ Катод: 2Н+ + 2 = Н2↑
Fe 0 + 2H + = Fe 2+ + H2↑
Так как ионы Fe 2+ с ионами Cl¯образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:
Fe 2+ + 2Cl¯ = FeCl2 (ионная форма); Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).
Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки. Ni менее активный металл, чем Fe — катодное покрытие. Схема коррозионного гальванического элемента:
При нарушении целостности катодного покрытия, между никелем и железом возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.
Выводы: Разрушение (коррозия) железной пластинки, частично покрытой никелем будет протекать более интенсивно, чем обычной железной пластинки.
Причиной электрохимической коррозии * является возникновение на поверхности металла короткозамкнутых гальванических элементов *.
В тонком слое влаги, обычно покрывающем металл, растворяются кислород, углекислый, сернистый и другие газы, присутствующие в атмосферном воздухе. Это создает условия соприкосновения металла с электролитом *. Различные участки поверхности любого металла обладают разными потенциалами. Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.
Электрохимическая коррозия может развиваться в результате контакта различных металлов. В этом случае будет возникать не микр о- , а макрогальванопара , и коррозия называется контактной (см. детальную классификацию видов коррозии). Сочетания металлов, сильно отличающихся значениями электродных потенциалов *, в технике недопустимы (например, алюминий – медь). В случае коррозии, возникающей при контакте какого-либо металла со сплавом, последний имеет потенциал, соответствующий наиболее активному металлу, входящему в состав сплава. Например, при контакте латуни (сплав цинка и меди) с железом корродировать будет латунь за счет наличия в ней цинка.
Представим схематично работу короткозамкнутого гальванического элемента, возникающего на поверхности металла, подверженного коррозии в электролите * (рисунок 8.1). Анодный участок имеет более электроотрицательный потенциал, поэтому на нем идет процесс окисления металла. Образовавшиеся в процессе окислен ия ио ны переходят в электролит, а часть освободившихся при этом электронов может перемещаться к катодному участку (на рисунке 8.1 показано стрелками). Процесс коррозии будет продолжаться в том случае, если электроны, перешедшие на катодный участок, будут с него удаляться. Иначе произойдет поляризация электродов *, и работа коррозионного гальванического элемента прекратится.
Процесс отвода электронов с катодных участков называется деполяризацией. Вещества, при участии которых осуществляется деполяризация, называются деполяризаторами. На практике чаще всего приходится встречаться с двумя типами деполяризации: водородной и кислородной. Тип деполяризации (катодный процесс) зависит от реакции среды раствора электролита.
В кислой среде электрохимическая коррозия протекает с водородной деполяризацией. Рассмотрим коррозию железной пластинки с примесями меди во влажной хлористоводородной атмосфере Имеется в виду атмосфера с примесью газообразного HCl. . В этом случае железо будет анодом ( E ° = –0,44В), а медь – катодом ( E ° =+0,34В). На анодном участке будет происходить процесс окисления железа, а на катодном – процесс деполяризац ии ио нами водорода, которые присутствуют в электролите:
А: Fe – 2e → Fe 2+ – окисление
К: 2 H + + 2e → H2 ↑ – восстановление
Схема возникающего короткозамкнутого гальванического элемента выглядит следующим образом:
A (–) Fe | HCl | Cu (+) К
В нейтральной среде коррозия протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере. Если коррозии во влажном воздухе подвергается железо с примесями меди, то электродные процессы можно записать в виде:
(А) Fe – 2e → Fe 2+ – окисление
(К) 2 H2O + O2 + 4e → 4 OH – – восстановление
У поверхности металла в электролите протекают следующие реакции:
Fe 2+ + 2 OH – → Fe( OH)2
Основная масса черных металлов разрушается вследствие процесса ржавления, в основе которого лежат вышеуказанные реакции.
Коррозия металла в результате неравномерного доступа кислорода . Случаи электрохимической коррозии, возникающей вследствие неравномерной аэрации кислородом различных участков металла, очень часто встречаются в промышленности и в подземных сооружениях. Примером может служить коррозия стальной сваи, закопанной в речное дно (рис 8.2).
Рисунок 8.2 – Коррозия в результате неравномерного доступа кислорода. Б – техническое сооружение; А – анодный участок; К – катодный участок.
Часть конструкции, находящаяся в воде, омывается растворенным в ней кислородом и, в случае возникновения условий для электрохимической коррозии, будет выполнять роль катода. Другая же часть конструкции, находящаяся в почве, будет анодом и подвергнется разрушению.