Коррозия свинца на воздухе уравнение реакции

Электронные уравнения анодного и катодного процессов коррозии в атмосфере и в растворах

Видео:Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать

Коррозия металлов и меры по ее предупреждению. 8 класс.

Коррозия при контакте марганца со свинцом или железом

Задача 123.
Контактируют 2 пары металлов Mn/Sn; Mn/Fe. В каком случае идет интенсивнее коррозия и какой металл корродирует? Почему? Составить электронные уравнения анодного и катодного процессов коррозии в атмосфере влажного газа и в растворе кислоты (H2SO4). Каков состав продуктов коррозии?
Решение:

Электродная пара металлов Mn/Sn (Fe = -0,44 В)

Стандартные электродные потенциалы марганца и олова равны соответственно -1,180 В и -0,136 В. Окисляться, т.е. подвергаться коррозии, будет марганец.Марганец имеет более электроотрицательный стандартный электродный потенциал (-1,180 В), чем олово (-0,180 В), поэтому он является анодом, олово – катодом.

а) Коррозия пары металлов Mn/Sn в атмосфере влажного газа

Анод Mn – 2 Коррозия свинца на воздухе уравнение реакции= Mn 2+
Катод 1/2O2 + H2O + 2 Коррозия свинца на воздухе уравнение реакции= 2ОН –

Mn + 1/2O2 + H2O = Mn(OH)2
Так как ионы Mn 2+ с гидроксид-ионами ОН – образуют малорастворимый гидроксид, то продуктом коррозии будет Mn(OH)2:

б) Коррозия пары металлов Mn/Sn в растворе кислоты (H2SO4)

Анод Mn – 2 Коррозия свинца на воздухе уравнение реакции= Mn 2+
Катод 2Н + + 2 Коррозия свинца на воздухе уравнение реакции= Н2
Mn + 2H + = Mn 2+ + H2

Так как ионы Mn 2+ с ионами SO4 2- образуют растворимую соль, придающая светло-розовую окраска раствора, то продуктом коррозии будет MnSO4:

Образуется сульфат ьарганц и при этом выделяется газообразный водород. Происходит интенсивное разрушение марганца.

Таким образом, при контакте марганца и олова коррозии будет подвергаться марганец.

Коррозия при контакте свинца с магнием

Задача 124.
Какой металл из 2х, находящихся в контакте, будет подвергаться коррозии? Указать катодный и анодный процессы, записать схему и продукты коррозии:
Pb/Mg в нейтральной среде.
Решение:
Стандартные электродные потенциалы свинца и магния равны соответственно -0,136 В и -2,38 В. Окисляться, т.е. подвергаться коррозии, будет магний.

Потенциал, отвечающий электродному процесу:

2Н + + 2 Коррозия свинца на воздухе уравнение реакции= Н2

В нейтральной среде, потенциал равен приблизительно -0,41 В. Следовательно, ионы водорода, находящиеся в воде и в нейтральных водных средах, могут окислять только те металлы, потенциал которых меньше, чем -0,41 В, — в данном случае это может быть магний, его потенциал намного меньше (-2,38 В).

В нейтральной среде коррозия металла протекает с кислородной деполяризацией, т.е. роль деполяризатора выполняет кислород, растворенный в воде. Этот вид коррозии наиболее широко распространен в природе: он наблюдается при коррозии металлов в воде, почве и в незагрязненной промышленными газами атмосфере.

Магний имеет более электроотрицательный стандартный электродный потенциал (-2,36 В), чем свинец (-0,136 В), поэтому он является анодом, свинец – катодом.

При коррозии пары Pb/Mg в нейтральной среде на катоде происходит кислородная деполяризация, а на аноде – окисление магния:

Анодный процесс: Mg 0 — 2 Коррозия свинца на воздухе уравнение реакции= Mg 2+
Катодный процесс: в нейтральной среде: 1/2O2 + H2O + 2 Коррозия свинца на воздухе уравнение реакции= 2OH – (O2 ↑+ 2H2O + 4 Коррозия свинца на воздухе уравнение реакции= 4OH – )

Так как ионы Mg 2+ с гидроксид-ионами ОН – образуют нерастворимый гидроксид, то продуктом коррозии будет Mg(OH)2:

Таким образом, при контакте свинца и магния коррозии будет подвергаться магний.

Видео:Коррозия металла. Химия – ПростоСкачать

Коррозия металла. Химия – Просто

Коррозия свинца

Коррозия свинца — разрушение металла под воздействием окружающей его среды.

Свинец отличается низкой теплопроводностью, мягкостью, плохими литейными свойствами и достаточно высокими коррозионными свойствами во многих агрессивных средах.

Температура плавления свинца – 327,4 ºС.

Плотность свинца – 11,3415 г/см 2 .

Для процесса Pb 2+ + 2e → Pb стандартный электродный потенциал свинца составляет –0,126В. Свинец достаточно активный металл, но его преимуществом считается способность переходить в пассивное состояние во многих агрессивных коррозионных средах.

Стойкость к коррозии свинца определяется, главным образом, стойкостью его продуктов коррозии.

В HF, H2SO4, H2CrO4, H3PO4 и многих других коррозионноактивных средах на поверхности Pb образуются труднорастворимые соединения, которые затрудняют диффузию коррозионных агентов к поверхности металла. Именно этим объясняется высокая стойкость к коррозии свинца.

Свинец часто используют для защиты от коррозии и воздействия агрессивных химических веществ в химической промышленности, для трубопроводов (например, внутренняя часть медного трубопровода), изготовления аккумуляторов. Металл не пропускает радиацию, поэтому используется для защиты от рентгеновского излучения. Свинцовые контейнеры применяются для перевозки, хранения радиоактивных материалов.

Находясь на близком расстоянии от свежезаготовленных пихты, дуба, некоторых других пород деревьев, которые очень медленно выделяют летучие кислоты, свинец сильно и достаточно быстро корродирует.

Видео:Химическая коррозияСкачать

Химическая коррозия

Свинец в воде

Свинец не подвергается коррозии в морской и пресной воде, однако из-за токсичности он не нашел применения в пищевой промышленности. Попадая в организм Pb скапливается в костной ткани, постепенно разрушая ее. Свинец пригоден для передачи технических вод. При контакте с аэрированной дистиллированной водой коррозия свинца очень велика (около 9 г/м 2 за сутки).

Видео:Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Свинец в грунте

Коррозия свинца в грунте зависит от состава почвы. Если грунт содержит органические кислоты – скорость коррозии свинца может превышать скорость коррозии стали при таких же условиях. Если почва содержит сульфаты, растворимые силикаты – коррозия свинца ничтожно мала (эти вещества действуют как ингибиторы коррозии).

Видео:Коррозия металлов и её предупреждениеСкачать

Коррозия металлов и её предупреждение

Оксиды свинца

При контакте с воздухом (свинец в атмосфере) данный металл может образовать следующие оксиды: PbO, Pb2О, Pb3О4, Pb2О3, PbO2.

Сульфат свинца, который образуется при нахождении металла в промышленной атмосфере, защищает поверхность от дальнейшего протекания процесса коррозии свинца.

Находясь в уксусной, азотной кислотах, щелочах свинец подвергается интенсивной коррозии, что объясняется высокой растворимостью образовавшихся ацетатов, нитратов (кислоты), плюмбатов и плюмбитов свинца (щелочи).

Видео:Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)Скачать

Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)

Свинец не поддается коррозии в таких средах:

— атмосфера (особенно промышленная);

— многие кислоты (горячая и холодная техническая H3PO4; раствор H2CrO4, который используют для электролитического хромирования; при комнатной температуре в растворе HF, концентрации не более 65%; H2SO3; H2SO4 с концентрацией не более 96% при комнатной температуре)

— сухом или влажном хлоре при температуре меньше 100 °С;

— сухом броме при небольших температурах.

Видео:Реакция СВИНЦА и КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ. Получение СУЛЬФАТА СВИНЦА.Простые опыты по химии.Скачать

Реакция СВИНЦА и КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ. Получение СУЛЬФАТА СВИНЦА.Простые опыты по химии.

Свинец поддается коррозии в таких средах:

— большинство аэрированных органических кислот;

— H2SO4, концентрации больше 96% при комнатной температуре;

Видео:Электролиз. Получение хлора, получение свинца. Химия – ПростоСкачать

Электролиз. Получение хлора, получение свинца. Химия – Просто

Задачи к разделу Коррозия металлов

В данном разделе вы найдете задачи по теме Коррозия металлов. Приведены уравнения реакций, протекающих при электрохимической коррозии металлов, а также примеры задач на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов.

Задача 1. В каком случае цинк корродирует быстрее: в контакте с никелем, железом или с висмутом? Ответ поясните. Напишите для всех случаев уравнение электрохимической коррозии в серной кислоте. Будет ли оксидная пленка, образующаяся на кальции, обладать защитными свойствами?

Решение.

В месте контакта двух металлов корродирует более активный металл. Происходит отток электронов от более активного металла к менее активному. Металл тем активнее, чем более отрицателен его электродный потенциал. В таблице электродных потенциалов найдем:

В данном случае, цинк корродирует быстрее в контакте с висмутом, так как из перечисленных металлов, Bi является самым неактивным. В образовавшейся паре роль анода выполняет цинк.

Запишем уравнения электрохимической коррозии в серной кислоте:

ZnBi

К: 2H + +2e — = H2

А : Zn — 2e — = Zn 2+

Zn + 2H + = Zn 2+ + H2

Fe-Bi

К: 2H + +2e — = H2

А : Fe — 3e — = Fe 3+

2Fe + 6H + = Fe 3+ + 3H2

Ni-Bi

К: 2H + +2e — = H2

А : Ni — 2e — = Ni 2+

Ni + 2H + = Ni 2+ + H2

Будет ли оксидная пленка, образующаяся на кальции, обладать защитными свойствами?

Защитные свойства пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе), значения которого вы найдете в таблице, приведенной в теоретической части данного раздела. Мы рассчитаем значение α по формуле:

т.е α Решение.

Протекторная защита заключается в присоединении к защищаемому металлическому изделию, металла с более отрицательным значением стандартного электродного потенциала E 0 , т.е. более активного металла. Для защиты железа подойдут, например, цинк и бериллий:

Запишем уравнения электрохимической коррозии во влажной среде, насыщенной кислородом:

FeZn

К: O2 + 2H2O + 4e — = 4OH —

А: Zn — 2 e — = Zn 2+

Fe-Be

К: O2 + 2H2O + 4e — = 4OH —

А : Be — 2e — = Be 2+

Будет ли оксидная пленка, образующаяся на алюминии, обладать защитными свойствами?

Защитные свойства пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе), значения которого вы найдете в таблице, приведенной в теоретической части данного раздела. Мы рассчитаем значение α по формуле:

Мок = 27·2+16·3 = 102 г/моль

т.е 2,5>α>1, а это значит, что оксидная пленка, образующаяся на Al, является сплошной и обладает защитными свойствами.

Задача 3. Деталь сделана из сплава, в состав которого входит магний и марганец. Какой из компонентов сплава будет разрушаться при электрохимической коррозии? Ответ подтвердите уравнениями анодного и катодного процесса коррозии: а) в кислой среде; б) в кислой среде, насыщенной кислородом. Будет ли оксидная пленка, образующаяся на олове, обладать защитными свойствами?

Решение.

При электрохимической коррозии сплава, в первую очередь будет разрушаться более активный металл, т.е. металл, имеющий более отрицательное значение стандартного электродного потенциала. В таблице электродных потенциалов найдем:

По значениям E видно, что магний является более активным металлом, чем марганец, вследствие чего при коррозии Mg будет разрушаться в первую очередь.

Запишем уравнения электрохимической коррозии магния а) в кислой среде; б) в кислой среде, насыщенной кислородом:

а) в кислой среде

А: Mg — 2 e — = Mg 2+

Mg + 2H + = Mg 2+ + H2

б) в кислой среде, насыщенной кислородом

К: O2 + 2H2O + 4e — = 4OH —

А : Mg — 2e — =Mg +

Будет ли оксидная пленка, образующаяся на олове, обладать защитными свойствами?

Защитные свойства пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе), значения которого вы найдете в таблице, приведенной в теоретической части данного раздела. Мы рассчитаем значение α по формуле:

Олово может образовать два оксида SnO и SnO2, поэтому рассчитаем значение α для каждого случая

МSnO = 119+16 = 135 г/моль

т.е для всех оксидных пленок α лежит в интервале 2,5>α>1, т.е. они являются сплошными и обладают защитными свойствами.

Задача 4. С целью защиты от коррозии цинковое изделие покрыли оловом. Какое это покрытие: анодное или катодное? Напишите уравнение атмосферной коррозии данного изделия при нарушении целостности покрытия. Оценить коррозионную стойкость алюминия в серной кислоте, если убыль массы алюминиевой пластины размером 70х20х1 мм составила после 8 суток испытания 0,0348 г.

Решение.

Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный), чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

В таблице электродных потенциалов найдем:

Олово будет выполнять роль катода и покрытие из него – катодное. При нарушении целостности покрытия, корродировать будет цинк, как более активный металл. При атмосферной коррозии протекают следующие уравнения реакций:

К: O2 + 2H2O + 4e — = 4OH —

А: Zn — 2 e — = Zn 2+

Оценить коррозионную стойкость алюминия в серной кислоте, если убыль массы алюминиевой пластины плотностью ρ = 2,7 г/см 3 , размером 70х20х1 мм составила после 8 суток испытания 0,0348 г.

Оценить коррозионную стойкость металла можно по формуле:

Kн = 365·h/τ

h = Δm/(S·ρ)

Найдем площадь поверхности металла:

S = 2·(7·2) + 2·(7·0,1) + 2·(2·0,1) = 29,8 см 2

h = 0,0348/(29,8·2,7) = 0,00043см = 0,0043 мм

Kн = 365·0,0043/8 = 0,02 мм/год

По десятибалльной шкале коррозионной стойкости металлов, алюминий соответствует 4 баллам и относится к стойким металлам.

Задача 5. Если на стальной предмет нанести каплю воды, то коррозии подвергается средняя, а не внешняя часть смоченного металла. Чем это можно объяснить? Какой участок металла, находящийся под влиянием капли, является анодным, а какой катодным? Составьте электронные уравнения соответствующих процессов. Будет ли оксидная пленка, образующаяся на никеле, обладать защитными свойствами?

Решение .

При нанесении на стальной предмет капли воды, наибольший доступ воздуха будет по краям капли, где протекает процесс восстановления кислорода. Т.е. края капли выступают в качестве катода. Для окисления железа остается центр капли, где доступ воздуха минимален. Здесь центр капли является анодом. В этом случае протекают следующие реакции:

А: Fe – 2e — = Fe 2+

Будет ли оксидная пленка, образующаяся на никеле, обладать защитными свойствами?

Защитные свойства пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе), значения которого вы найдете в таблице, приведенной в теоретической части данного раздела. Мы рассчитаем значение α по формуле:

Мок = 59+16 = 75 г/моль

Подставим значения в формулу:

α = 75·8,9/(59·1·6,7) = 1,7

т.е α лежит в интервале 2,5>α>1, т.е. оксидная пленка является сплошной и обладает защитными свойствами.

Задача 7. Сплав содержит железо и никель. Какой из названных компонентов будет разрушаться при атмосферной коррозии? Приведите уравнение анодного и катодного процессов. Оценить коррозионную стойкость цинка на воздухе при высоких температурах. Образец цинка размером 50х30х1 мм после 180 часов окисления и снятия продуктов коррозии весил 10,6032 г.

Решение.

Исходя из положения металлов в электрохимическом ряду напряжения металлов, находим, что железо более активный металл, чем никель:

Поэтому в первую очередь при атмосферной коррозии будет разрушаться железо. В этом случае протекают следующие реакции:

А: Fe – 2e — = Fe 2+

Далее Fe(OH)2 переходит в Fe(OH)3

Оценить коррозионную стойкость цинка на воздухе при высоких температурах. Образец цинка плотностью ρ = 7,14 г/см 3 , размером 50х30х1 мм после 180 часов окисления и снятия продуктов коррозии весил 10,6032 г.

Оценить коррозионную стойкость металла можно по формуле:

Kн = 365·h/τ

h = Δm/(S·ρ)

Найдем площадь поверхности металла:

S = 2·(5·3) + 2·(5·0,1) + 2·(3·0,1) = 31,6 см 2

Масса металла до коррозии равна:

Убыль массы:

Δm = m1 – m2 = 10,71 — 10,6032 = 0,1068

h = 0,1068/(31,6·7,14) = 0,00047 см = 0,0047 мм

Kн = 365·0,0047/7,5 = 0,23 мм/год

По десятибалльной шкале коррозионной стойкости металлов, цинк соответствует 6 баллам и относится к пониженностойким металлам.

Задача 8. Почему химически чистое железо является более стойким против коррозии, чем техническое железо? Составьте уравнения анодного и катодного процессов, происходящих при коррозии технического железа во влажном воздухе и в азотной кислоте. Будет ли оксидная пленка, образующаяся на свинце, обладать защитными свойствами?

Решение.

Техническое железо содержит примеси, которые, как правило, выполняют роль катода. Либо, если это углерод, который не передает в раствор положительно заряженных ионов и не имеет заградительного барьера от ионов водорода в кислой среде. Само железо будет служить анодом и подвергаться разрушению.

В химически чистом железе нет примесей, которые образовали бы гальванопару с железом, где бы оно окислялось.

При коррозии технического железа протекают следующие реакции:

Во влажном воздухе

А: Fe – 2e — = Fe 2+

Далее Fe(OH)2 переходит в Fe(OH)3

В азотной кислоте

А: Fe – 2e — = Fe 2+

Будет ли оксидная пленка, образующаяся на свинце, обладать защитными свойствами?

Защитные свойства пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе), значения которого вы найдете в таблице, приведенной в теоретической части данного раздела. Мы рассчитаем значение α по формуле:

Свинец может образовать оксиды состава PbO и PbO2, поэтому рассчитаем значение α для каждого случая

МPbO = 207+16 = 223 г/моль

т.е для всех оксидных пленок α лежит в интервале 2,5>α>1, т.е. они являются сплошными и обладают защитными свойствами.

Задача 9. Приведите примеры двух металлов, пригодных для протекторной защиты никеля. Для обоих случаев напишите уравнение электрохимической коррозии в среде азотной кислоты. Оценить коррозионную стойкость кадмия на воздухе при высоких температурах. Образец кадмия плотностью ρ = 8,65 г/см 3 , размером 45х25х1 мм после 150 часов окисления и снятия продуктов коррозии весил 10,0031 г.

Решение.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Для протекторной защиты никеля подойдут, например, железо и цинк:

При электрохимической коррозии в среде азотной кислоты протекают следующие реакции:

Ni — Fe

А: Fe – 2e — = Fe 2+

Ni — Zn

Оценить коррозионную стойкость кадмия на воздухе при высоких температурах. Образец кадмия плотностью ρ = 8,65 г/см 3 , размером 45х25х1 мм после 150 часов окисления и снятия продуктов коррозии весил 10,0031 г.

Оценить коррозионную стойкость металла можно по формуле:

Kн = 365·h/τ

h = Δm/(S·ρ)

Найдем площадь поверхности металла:

S = 2·(4,5·2,5) + 2·(4,5·0,1) + 2·(2,5·0,1) = 23,9 см 2

Масса металла до начала коррозии равна:

m1 = V·ρ = 4,5·2,5·0,1·8,65 = 9,7313 г

Убыль массы:

Δm = m1 – m2 = 10,0031 – 9,7313 = 0,2718

h = 0,2718/(23,9·8,65) = 0,0013 см = 0,013 мм

Kн = 365·0,013·24/150 = 0,76 мм/год

По десятибалльной шкале коррозионной стойкости металлов, определяем, что в данных условиях, кадмий соответствует 7 баллам и относится к пониженностойким металлам.

🌟 Видео

§13, 9 кл. Коррозия металловСкачать

§13, 9 кл. Коррозия металлов

Нитрат свинца и "Буря в пробирке" (химия)Скачать

Нитрат свинца и "Буря в пробирке" (химия)

Коррозия металловСкачать

Коррозия металлов

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Гальванические элементы. 1 часть. 10 класс.Скачать

Гальванические элементы. 1 часть. 10 класс.

Химия 9 Коррозия металловСкачать

Химия 9 Коррозия металлов

Коррозия опытыСкачать

Коррозия опыты

Все реакции с металлами за 1 урок | ЕГЭ по химии 2024 | Екатерина СтрогановаСкачать

Все реакции с металлами за 1 урок | ЕГЭ по химии 2024 | Екатерина Строганова

Коррозия металлов и способы защиты от нееСкачать

Коррозия металлов и способы защиты от нее

Решение цепочек превращений по химииСкачать

Решение цепочек превращений по химии

ПОЧЕМУ НЕ БУДЕТ КОРРОЗИИ МЕТАЛЛА И КРУИЗАСкачать

ПОЧЕМУ НЕ БУДЕТ КОРРОЗИИ МЕТАЛЛА И КРУИЗА

Роль кислорода в процессе коррозии железаСкачать

Роль кислорода в процессе коррозии железа
Поделиться или сохранить к себе: