Коррозия никеля – разрушение металла под воздействием агрессивных сред. Никель обладает достаточно высокой коррозионной стойкостью, что объясняется его способностью пассивироваться.
Для процесса Ni 2+ + 2e → Ni стандартный электродный потенциал никеля составляет -0,25В. Никель положителен по отношению к железу, но отрицателен – Н.
Никель относится к прочным, тугоплавким (температура плавления никеля – 1455 °С), пластичным, достаточно тяжелым металлам (плотность никеля — 8,902 г/см 3 ).
Коррозия никеля зачастую протекает с кислородной деполяризацией (наличие кислорода, воздуха). В деаэрированной воде при комнатной температуре никель устойчив, а в аэрированных растворах (особенно при перемешивании) металл начинает корродировать. В растворах, содержащих CuCl2, AgNO3, FeCl3, NaClO, HgCl2 коррозия никеля ускоряется.
Никель обладает хорошей коррозионной стойкостью во многих органических кислотах, разбавленных неокисляющих кислотах (H2SO4 концентрацией до 70%, HCl концентрацией до 15%).
Коррозия никеля не наблюдается в большинстве горячих спиртах, жирных кислотах и других органических средах, поэтому металл нашел широкое применение в пищевой промышленности. Т.к. металл устойчив еще и к воздействию щелочей всех температур и концентраций, то является идеальным вариантом для химической промышленности, в частности для изготовления аппаратов выпарки, плавления щелочей. Свою стойкость к щелочам он передает сплавам никеля с железом.
При омывании никеля морской водой на нем образуются питтинги (протекает питтинговая коррозия).
В атмосфере никель отличается высокой коррозионной стойкостью, даже при повышении температуры до 875 °С. Часто его используют и при более высоких значениях. При воздействии обычных атмосфер никель не подвергается коррозионному растрескиванию под напряжением.
Высокой стойкостью к коррозии обладают сплавы никеля с молибденом, медью, хромом, железом.
- Коррозия никеля не протекает (никель устойчив) в следующих средах:
- Коррозия никеля наблюдается в таких средах:
- Электрохимические процессы на электродах при коррозии металла
- Схема развития коррозии поверхности корпуса судна
- Металлы, которые применяются дла катодного покрытия стали
- Схема коррозии никелированного железа
- Коррозия железа в кислой среде
- Морская коррозия
- Почему морская вода так опасна для металла
- Особенности протекания процесса
- Что усиливает морскую коррозию
- Виды морской коррозии
- Как защитить металл от повреждения
- Использование специальных лакокрасочных покрытий
- Применение металлических защитных покрытий
- Зачистка поверхности
- Низкое легирование
- Создание дополнительной электрохимической защиты
- Защита методом горячего цинкования
- 💡 Видео
Видео:Химическая коррозияСкачать
Коррозия никеля не протекает (никель устойчив) в следующих средах:
— атмосфера, даже при повышенной температуре (находясь в промышленной атмосфере на поверхности образуется тонкая незащитная пленка с основного сульфата никеля, которая приводит к потускнению металла);
— горячие, холодные щелочи, их расплавы;
— органические и неорганические окислительные кислоты (разбавленные).
Видео:Электрохимическая коррозияСкачать
Коррозия никеля наблюдается в таких средах:
— окислительные кислоты (например, HNO3);
— атмосфера серы, восстановительная среда, содержащая серу (при Т выше 315 °С);
— растворы окислительных солей;
— щелочные растворы гипохлоритов (вызывают питтинговую коррозию);
— аэрированный гидроксид аммония (гидрат аммиака, аммиачная вода).
Видео:Коррозия металла. Химия – ПростоСкачать
Электрохимические процессы на электродах при коррозии металла
Видео:Коррозия металловСкачать
Схема развития коррозии поверхности корпуса судна
Задача 139.
На окрашенной поверхности корпуса судна, имеющий дефекты в покрытии, коррозионный ток сосредоточен на поврежденных участках. Составьте схему развития коррозии, а так же рассчитайте потерю металла за месяц если сила коррозионого тока, с учетом зоны действия составила 0,05 А.
Решение:
Анодный процесс:
Fe 0 — 2 = Fe 2+
Катодный процесс в нейтральной среде:
1/2O2 + H2O + 2 = 2OH –
Так как ионы Fe 2+ с гидроксид-ионами OH – образуют нерастворимый гидроксид, то продуктом коррозии будет Fe(OH)2. Воздух окисляет его и образуется ржавчина, гидратированный оксид железа(III):
По формуле объединенного закона электролиза:
m = Э . I . t/F = М . I . t/n.F = K . I . t, где
Э – эквивалентная масса вещества (молярная масса эквивалента); F– постоянная Фарадея, равная 96500 Кл/моль или 96500 А.с/моль;. I – сила тока, А; t – время проведения электролиза, с; М – молярная масса вещества; n – число отданных или принятых электронов; К – электрохимический эквивалент вещества.
Рассчитаем потерю металла, получим:
mпотери(Fe) = (55,845 . 0,05 . 2592000)/(2 . 96500) = 7237512/193000 = 37,5 г.
Металлы, которые применяются дла катодного покрытия стали
Задача 140.
Какие металлы могут выполнять для стальных изделий роль катодных покрытий: Ni, Cr, Mn, Sn, Cu? Запишите схему коррозии никелированного железа и определите продукт коррозии во влажном воздухе?
Решение:
К катодным покрытиям относятся те металлы, у которых потенциал выше потенциала защищаемого металла. Анодными покрытиями являются металлы, у которых электродный потенциал в данных условиях более отрицателен, чем потенциал защищаемого металла.
По таблицам найдем стандартные электродные потенциалы: Fe (-0,441 В); Ni (-0,234 B), Cr (-0,74 B), Mn (-1,18 B), Sn (-0,141 B), Cu (+0,338 B).
Так как у никеля, олова и меди электродные потенциалы выше чем у железа, то эти металлы могут выполнять для стальных изделий роль катодных покрытий.
Схема коррозии никелированного железа
При покрытии железа никелем возникает коррозионная пара, в которой никель является катодом, а железо – анодом, так как железо имеет более отрицательный потенциал (-0,441 В), чем никель (0,234 В). При этом будут протекать следующие электрохимические процессы:
а) Во влажном воздухе:
Анодный процесс: Fe 0 -2 = Fe 2+
Катодный процесс: 1/2O2 + H2O + 2 = 2OH –
Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:
б) В растворе кислоты:
Анодный процесс: Fe 0 -2 = Fe 2+
Катодный процесс: 2Н + + 2 = Н2↑
Водород будет выделяться во внешнюю среду, а ионы железа Fe 2+ с кислотными ионами будут образовывать соль, т. е. железо будет разрушаться с образованием ионов железа Fe 2+ .
Таким образом, при покрытии железа никелем при повреждении или при образовании пор разрушается основной металл – железо. Это пример катодного покрытия металла.
Коррозия железа в кислой среде
Задача 141.
В раствор хлороводородной (соляной) кислоты опустили железную пластинку и железную пластинку, частично покрытую никелем. В каком случае процесс коррозии железа протекает интенсивно? Составьте схемы коррозионных гальванических элементов и напишите электронные уравнения электродных процессов. Рассчитайте ЭДС гальванических элементов.
Решение:
Стандартные электродные потенциалы железа и никеля равны соответственно -0,44 В, -0,24 В.
а) Коррозия железной пластинки в растворе соляной кислоты
Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем водород (0,00 В), поэтому оно является анодом.
Электронные уравнения электродных процессов будут иметь вид:
Анод: Fе 0 – 2 = Fe 2+
Катод: 2Н + + 2 = Н2↑
Fe 0 + 2H + = Fe 2+ + H2↑
Так как ионы Fe 2+ с ионами Cl – образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:
Fe 2+ + 2Cl¯ = FeCl2 (ионная форма);
Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).
Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки.
Схема коррозионного гальванического элемента будет иметь вид:
или в ионном виде:
б) Коррозия никелированного железа в растворе соляной кислоты
Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,44 В), чем никель (-0,24 В), поэтому оно является анодом, а никель — катодом.
Электронные уравнения электродных процессов будут иметь вид:
Анод: Fе 0 – 2 = Fe 2+
Катод: 2Н+ + 2 = Н2↑
Fe 0 + 2H + = Fe 2+ + H2↑
Так как ионы Fe 2+ с ионами Cl¯образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeCl2:
Fe 2+ + 2Cl¯ = FeCl2 (ионная форма);
Fe + 2HCl = FeCl2 + Н2↑ (молекулярная форма).
Образуется хлорид железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки. Ni менее активный металл, чем Fe — катодное покрытие.
Схема коррозионного гальванического элемента:
При нарушении целостности катодного покрытия, между никелем и железом возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.
Выводы:
Разрушение (коррозия) железной пластинки, частично покрытой никелем будет протекать более интенсивно, чем обычной железной пластинки.
Видео:Электрохимическая коррозия (алюминий — медь)Скачать
Морская коррозия
Одним из наиболее опасных для металла явлений считается морская коррозия. Это электрохимический процесс, который запускается и протекает из-за особенностей состава жидкости.
В этом материале мы подробнее разберем особенности явления, его протекание и методы защиты.
Видео:Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать
Почему морская вода так опасна для металла
По статистике, металлические изделия в море портятся намного быстрее, чем в стандартных условиях на открытом воздухе.
Катализатором становится 3 особенности жидкости:
- Большое количество кислорода. Как известно, именно он запускает окисление, которое и понимается под коррозией. Уровень содержания кислорода – до 8 мг на один литр.
- Электропроводность. Морская вода выступает как хороший электролит. В некоторых морях ее электропроводность составляет 3х10-2 Ом-1 см-1.
- Особый состав. Химики давно установили, что в жидкости присутствует весь набор веществ, делающих ее опасной для металла – от сульфатов натрия и солей кальция до хлоридов.
Коррозия в морской воде протекает быстрее, потому что у нее есть выраженное депассивирующее действие. Если на поверхности начинает формироваться защитная пассивная пленка, вода быстро разрушает ее.
Все что попадает в море начинает разрушаться. Убедитесь в этом, если посмотрите на состояния днищ кораблей, погруженных металлоконструкций, трубопроводов, проложенных по дну.
То же относится и к металлическим изделиям, которые периодически соприкасаются с агрессивной средой, к примеру, при охлаждении.
Видео:Гальванические элементы. 1 часть. 10 класс.Скачать
Особенности протекания процесса
Морская коррозия металлов протекает под воздействием множества внешних агрессивных факторов. Как мы уже отмечали, этот процесс относится к электромеханическим разновидностям процессов.
Его протекание напрямую связано с кислородной деполяризацией и дифузионно-кинетическим катодным контролем.
Проблем добавляет то, что сама вода постоянно двигается. Это связано не только с давлением, но и с тем, что суда постоянно находятся в движении с собственной скоростью.
В зависимости от условий, в которых находится металлоконструкция, меняется тип контроля:
- При сильной аэрации и в местах с сильным течением, частым волнением, кинетический контроль выходит на первый план.
- На участках где морская вода находится в неподвижном состоянии, преобладающим оказывается катодный контроль.
Если рассматривать процесс как катодно-анодную реакцию, мы увидим, что в качестве анода выступает металл, в то время как катодом становится оксидная пленка на его поверхности.
Морская коррозия становится заметной быстро. Она вызывает масштабное разрушение материала, на нем появляются язвы большой глубины, структура металла разрушается и становится хрупкой. Материал уже переносит прежнего нагрузок.
Также не стоит сбрасывать со счетов атмосферную коррозию в морских районах. Она связана с особым составом воздуха, воздействием других особых условий среды.
Видео:Атмосферная коррозияСкачать
Что усиливает морскую коррозию
На разных морях ржавение металла протекает с разной скоростью. На скорость и особенности явления влияет 6 факторов среды:
- Степень солености воды. Чем больше твердых веществ растворено в жидкости, тем больше будет степень солености. Этот фактор не сильно влияет на скорость или характер процесса, но чем больше содержание, тем выше будет опасность на контрасте с другими факторами.
- Состав воды. Состав жидкости формирует благоприятную среду, в которой коррозия могла бы развиваться намного быстрее. Состав отличается в зависимости от географического расположения места. Одними из самых опасных веществ становятся хлориды и сероводород. Если их много, катодный и анодный процесс становятся более интенсивными. Также такой состав приводит к появления сульфидов, которые будет сложно растворить. Еще один фактор риска – большое количество ионов брома. Интересная особенность заключается и в том, что в ряде случае состав выступает и в качестве защитного фактора – он помогает сформировать специальную пленку, отталкивающую внешние угрозы.
- Скорость течения. Чем быстрее течение, тем лучше будет диффузия кислорода. Потому, когда судно движется с большой скоростью, риск морской коррозии становится все более и более ощутимым. Но опасность представляет и неподвижная вода. Даже когда на море штиль, есть риск что ржавение начнет протекать с диффузионным контролем.
- Место расположения ватерлинии. Место, с которым соприкасается морская вода, намного больше других поражено коррозионными процессами. Причина в том, что на этом участке кислород наиболее сильно влияет на металл. Также сказывается и температура. Вода, которая омывает ватерлинию более теплая из-за контакта с солнечными лучами.
- Наличие прокатной окалины на поверхности металла. Опасность ее присутствия заключается в том, что в этом случае сильно упрощается формирование гальванопары. Это опасно, потому что возникает анодное растворение металла.
- Биологический состав морской воды. Как и в почве, в морской воде много микроорганизмов, флоры и фауны, которые стимулируют разложение металла. К ним относятся различные виды бактерий, а также кораллы и моллюски. При их большом скоплении увеличивается риск образования коррозийных поражений. Исключение составляют только некоторые виды морских существ, которые не позволяют кислороду контактировать с металлическими частями. Скорость протекания коррозийного поражения также зависит от сплава, который был использован при изготовлении той или иной конструкции. Так опасность для биокоррозии представляют сплавы, в которых есть много свинца, никеля, олова и алюминия. Наиболее защищенными оказываются магниевые сплавы и медь.
Видео:Коррозия металлов и способы защиты от нееСкачать
Виды морской коррозии
В морской воде протекает 2 вида коррозии.
Наиболее распространенными среди них считаются следующие:
- Контактная. Проявляется из-за контакта жидкости и металла. Причиной становится хорошая электропроводность. Если рядом в воде находится несколько металлических изделий, металл становится по отношению к стали катодом.
- Электрокоррозия. Появляется, потому что в воде находятся блуждающие токи. Иногда проблемы оказываются связанными и с самими морскими судами, состоянием проложенной на них электросети.
Коррозия металла в морской воде способна за короткое время вывести из строя даже крупную металлоконструкцию. Как результат – она теряет прочность и обрушиться.
Это всегда риск появления человеческих жертв и больших убытков.
К 2020 году разработано множество средств, позволяющих или обеспечить защиту от агрессивной среды или замедлить протекание процесса. Их качество доказано на практике – удается получить заметный результат.
Рассмотрим вопросы защиты от морской коррозии более подробно.
Видео:Коррозия металла (часть 2). Химия – ПростоСкачать
Как защитить металл от повреждения
В работе используется несколько видов защитных средств, к которым относятся такие, как:
Использование специальных лакокрасочных покрытий
Как и в случае с борьбой с ржавением под открытым воздухом, очень важно не допустить контакта агрессивной среды с металлом. ЛКМ в таком случае подходят отлично.
Есть несколько типов материалов, которые можно свободно использовать в окрашивании.
К ним относятся такие, как:
- Краски на основе битумов.
- Составы с фенолформальдегидной основой.
- Этинолевые лакокрасочные материалы.
Хорошо показывают себя вещества с эпоксидной, каменноугольной основой. Главное требование, чтобы в них было как можно меньше растворителей.
Главное преимущество использования такого средства заключается в простоте нанесения.
Краска наносится на поверхность, защищенные места сразу становятся хорошо видимыми.
Для дополнительного усиления, ограждающего от агрессивной среды эффекта, можно также применять разные окиси, в том числе, ртути и меди. В таком случае конструкция не будет обрастать морскими обитателями.
Чтобы нанесение ЛКМ дало лучшие результаты, поверхность металлоконструкции нужно будет фосфатировать. Только после этого допускается проведение окрашивания.
Стоит также учитывать, что оно должно быть как можно более толстым, чтобы удержаться дольше и сохранить заметный эффект.
Видео:§13, 9 кл. Коррозия металловСкачать
Применение металлических защитных покрытий
В этом направлении работает наша компания. Среди самых распространенных видов составов можно назвать цинк.
Он наносится на металл слоем толщиной до 200 мкм. При этом создается хорошая защита от контакта со средой.
Еще одно преимущество – такой материал можно окрашивать.
Оцинковывают самые разные изделия, в том числе, днища морских судов.
Зачистка поверхности
Процесс очень важен, потому что позволяет снять окалину. Как мы уже говорили выше, ее присутствие способно в несколько раз ускорить негативный процесс.
Для удаления окалины могут применяться высокие температуры, химическое травление и очистка пескоструйным методом.
Низкое легирование
Изменение самого характера стали – один из действенных методов для борьбы с коррозией. По данным исследований, стали с большим содержанием никеля портятся особенно быстро, в то время как добавление меди помогает сделать конструкцию намного более стойкой.
Создание дополнительной электрохимической защиты
Она может быть двух типов – от внешнего источника тока или от протектора. При этом удается остановить формирование пор и протекание электрохимического процесса, представляющего большую опасность для материалов.
Все перечисленные методы используются и в месте. В таком случае, вероятность повреждения металла станет намного ниже. Вопрос о подборе материалов, правильном конструировании также стоит очень остро.
Видео:Коррозия металлов. 11 класс, базовый уровеньСкачать
Защита методом горячего цинкования
Наша компания предлагает горячую оцинковку различных видов конструкций, в том числе тех, которые постоянно находятся в контакте с морской водой.
Работаем с 2007 года и готовы быстро выполнить даже наиболее сложный и крупный заказ.
4 причины обратиться к нам:
- Действуют три цеха горячего цинкования. Наши производственные мощности – 120 тысяч тонн в год.
- Работаем с большинством видов деталей и конструкций. На предприятии установлена самая крупная ванна в ЦФО. Ее глубина составляет 3,43 метра.
- Гарантируем качество. Горячее цинкование проводится строго по ГОСТ 9.307-89.
- Используем передовое оборудование. Установлена европейская техника от KVK KOERNER и EKOMOR.
Готовы ответить на все интересующие заказчика вопросы и быстро приступить к работе. Звоните или оставляйте заявку на сайте.
💡 Видео
Как избавится от Ржавчины и Коррозии НАВСЕГДА | Как спасти металлСкачать
Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать
6 способов защиты от коррозииСкачать
Литий. Как добывается, где применяется и когда закончитсяСкачать
Питтинговая и точечная коррозияСкачать
Химия 11 класс (Урок№9 - Коррозия металлов и её предупреждение.)Скачать
Химические свойства металлов. 9 класс.Скачать
Она убьет любую сталь! Гальваническая или электрохимическая коррозия. Как работает и как бороться.Скачать