Коррозия меди в соляной кислоте уравнение

Содержание
  1. Медь покрыта оловом. Напишите уравнения анодного и катодного процессов коррозии при нарушении покрытия в среде соляной кислоты.
  2. Составление электронных уравнений анодного и катодного процессов происходящих при коррозии
  3. Решение задач на коррозию металлов
  4. 2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).
  5. Химические свойства меди
  6. Взаимодействие с простыми веществами
  7. с кислородом
  8. с серой
  9. с галогенами
  10. Взаимодействие со сложными веществами
  11. с кислотами-неокислителями
  12. с кислотами-окислителями
  13. — концентрированной серной кислотой
  14. — с разбавленной азотной кислотой
  15. — с концентрированной азотной кислотой
  16. с оксидами неметаллов
  17. с оксидами металлов
  18. с солями металлов
  19. Коррозия меди
  20. Химические свойства цинка
  21. Химические свойства хрома
  22. Взаимодействие с неметаллами
  23. с кислородом
  24. с галогенами
  25. с азотом
  26. с серой
  27. Взаимодействие со сложными веществами
  28. Взаимодействие с водой
  29. Взаимодействие с кислотами
  30. Химические свойства железа
  31. Взаимодействие с простыми веществами
  32. С кислородом
  33. С серой
  34. С галогенами
  35. С водородом
  36. Взаимодействие со сложными веществами
  37. Взаимодействие с кислотами
  38. Коррозия (ржавление) железа
  39. 📸 Видео

Видео:Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Медь покрыта оловом. Напишите уравнения анодного и катодного процессов коррозии при нарушении покрытия в среде соляной кислоты.

Медь покрыта оловом. Напишите уравнения анодного и катодного процессов коррозии при нарушении покрытия в среде соляной кислоты.

Олово более активный металл, поэтому он будет анодом, а медь катодом при нарушении защитного слоя. Схема гальванического элемента будет иметь вид:

На аноде: Sn – 2 ê = Sn 2+ – окисление

На катоде: 2 Н + + 2ê = Н2 – восстановление

Видео:Коррозия металла. Химия – ПростоСкачать

Коррозия металла. Химия – Просто

Составление электронных уравнений анодного и катодного процессов происходящих при коррозии

Видео:Что если в соляную кислоту добавить медьСкачать

Что если в соляную кислоту добавить медь

Решение задач на коррозию металлов

Задание 287.
Составьте электронные уравнения анодного и катодного процессов с кислородной и водородной деполяризацией при коррозии пары магний — никель. Какие продукты коррозии образуются в первом и во втором случаях?
Решение:
Магний имеет более электроотрицательный стандартный электродный потенциал (-2,36 В), чем никель (-0,24 В), поэтому он является анодом, никель – катодом.

Анодный процесс – окисление металла: Mе 0 — 2 Коррозия меди в соляной кислоте уравнение= Mе n+

и катодный процесс – восстановление ионов водорода (водородная деполяризация) или молекул кислорода (кислородная деполяризация). Поэтому при коррозии пары Mg — Ni с водородной деполяризацией происходит следующие процессы:

Анодный процесс: Mg 0 — 2 Коррозия меди в соляной кислоте уравнение= Mg 2+
Катодный процесс: в кислой среде: 2Н + + 2 Коррозия меди в соляной кислоте уравнение= Н2

Продуктом коррозии будет газообразный водород соединение магния с кислотным остатком (соль).

При коррозии пары Mg — Ni в атмосферных условиях на катоде происходит кислородная деполяризация, а на аноде – окисление магния:

Анодный процесс: Mg 0 — 2 Коррозия меди в соляной кислоте уравнение= Mg 2+
Катодный процесс: в нейтральной среде: 1/2O2 + H2O + 2 Коррозия меди в соляной кислоте уравнение= 2OH —
в нейтральной или в щелочной среде: 1/2O 2 + H 2 O + 2 Коррозия меди в соляной кислоте уравнение= 2OH —

Так как ионы Mg 2+ с гидроксид-ионами ОН — образуют нерастворимый гидроксид, то продуктом коррозии будет Mg(OH)2.

Задание 288.
В раствор хлороводородной (соляной) кислоты поместили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
Решение:
а) При помещении цинковой пластинки в раствор хлороводородной (соляной) кислоты происходит реакция замещения:

Через некоторое время цинковая пластинка в растворе разбавленной соляной кислоте пассивируется оксидной плёнкой, образующейся при взаимодействии цинка с кислородом растворённым в воде по схеме: Zn + 1/2 O2 = ZnO, поэтому коррозия цинка вскоре замедлится.

б) При помещении цинковой пластинки, частично покрытой медью, в раствор соляной кислоты образуется гальваническая пара Zn — Cu, в которой цинк будет анодом, а медь – катодом. Происходит это так, потому что цинк имеет более электроотрицательный электродный потенциал (-0,763 В), чем медь (+0-,34 В).

Анодный процесс: Zn 0 — 2 Коррозия меди в соляной кислоте уравнение= Zn 2+ ;
Катодный процесс: в кислой среде: 2Н + + 2 Коррозия меди в соляной кислоте уравнение= Н2

Ионы цинка Zn 2+ с ионами хлора Cl — будут давать соль ZnCl2 – сильный электролит, а водород будет интенсивно выделяться в виде пузырьков газа. Этот процесс будет бурно протекать до тех пор пока не закончится приход ионов водорода Н + соляной кислоты или пока полностью не растворится цинковая пластинка. Ионно-молекулярное уравнение коррозии:

Zn 0 + 2H + = Zn 2+ + H2О↑

Молекулярная форма уравнения:

Задание 289.
Почему химически чистое железо более стойко против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов происходящих при коррозии технического железа во влажном воздухе и в кислой среде.
Решение:
Химически чистое железо более стойко к коррозии, потому что с кислородом образует на поверхности оксидную плёнку, которая препятствует дальнейшему разрушению металла. Техническое железо содержит примеси различных металлов и неметаллов, которые образуют различные гальванические пары железо — примесь. Железо, имея отрицательный стандартный электродный потенциал (-0,44 В) со многими примесями, потенциал которых значительно положительнее, является анодом, а примеси – катодом:

Анодный процесс: Fe 0 -2 Коррозия меди в соляной кислоте уравнение= Fe 2+
Катодный процесс: в кислой среде: 2Н + + 2 Коррозия меди в соляной кислоте уравнение= Н2
в нейтральной или в щелочной среде: 1/2O2 + H2O + 2 Коррозия меди в соляной кислоте уравнение= 2OH —

Так как ионы Fe 2+ с гидроксильной группой образуют нерастворимый гидроксид, то продуктом атмосферной коррозии железа будет Fe(OH)2. При контакте с кислородом воздуха Fe(OH)2 быстро окисляется до метагидроксида железа FeO(OH), приобретая характерный для него бурый цвет:

Видео:Электрохимическая коррозияСкачать

Электрохимическая коррозия

2.2.4. Химические свойства переходных металлов (меди, цинка, хрома, железа).

Видео:Опыты по химии. Соляная кислота и металлыСкачать

Опыты по химии. Соляная кислота и металлы

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu2S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Взаимодействие с простыми веществами

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

Коррозия меди в соляной кислоте уравнение

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

Коррозия меди в соляной кислоте уравнение

При избытке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Коррозия меди в соляной кислоте уравнение

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal2, где Hal – F, Cl или Br:

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

Коррозия меди в соляной кислоте уравнение

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

Взаимодействие со сложными веществами

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

Коррозия меди в соляной кислоте уравнение

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением: Коррозия меди в соляной кислоте уравнение

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO3 приводит к образованию нитрата меди (II) и монооксида азота:

— с концентрированной азотной кислотой

Концентрированная HNO3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO2, NO, N2O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N2:

Коррозия меди в соляной кислоте уравнение

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

Коррозия меди в соляной кислоте уравнение

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Коррозия меди в соляной кислоте уравнение

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

Коррозия меди в соляной кислоте уравнение

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Видео:Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать

Коррозия металлов и меры по ее предупреждению. 8 класс.

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН)2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

Коррозия меди в соляной кислоте уравнение

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

Коррозия меди в соляной кислоте уравнение

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.

Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

Коррозия меди в соляной кислоте уравнение

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Видео:Взаимодействие металлов с соляной кислотойСкачать

Взаимодействие металлов с соляной кислотой

Химические свойства хрома

Хром — элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

С бромом же хром реагирует при температуре красного каления (850-900 o C):

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N2:

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы:

Коррозия меди в соляной кислоте уравнение

Видео:КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать

КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и Металлами

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Либо же при избытке серы дисульфид железа:

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =t o => 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =t o => 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =t o => 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Коррозия меди в соляной кислоте уравнение

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.) и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

📸 Видео

оксид меди + соляная кислотаСкачать

оксид  меди + соляная кислота

Соли меди . Цинк + соляная кислота .Скачать

Соли меди .  Цинк + соляная  кислота .

Соляная кислота. Свойства и особенности. То чего вы не знали.Скачать

Соляная кислота. Свойства и особенности. То чего вы не знали.

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии - INTENSIV

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIVСкачать

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ ХИМИЯ 8 класс // Подготовка к ЕГЭ по Химии - INTENSIV

ЭлектролизСкачать

Электролиз

Медь и азотная кислота 🧑‍🔬Скачать

Медь и азотная кислота 🧑‍🔬

Взаимодействие оксида меди (II) с соляной кислотой I ЕГЭ по химииСкачать

Взаимодействие оксида меди (II) с соляной кислотой I ЕГЭ по химии

Алюминий, цинк и медь с соляной кислотой. Аманиязова Умида, Х01-310Скачать

Алюминий, цинк и медь с соляной кислотой. Аманиязова Умида, Х01-310

Взаимодействие железа с соляной кислотойСкачать

Взаимодействие железа с соляной кислотой

Реакция меди с соляной кислотой. Последний вопрос для знатоковСкачать

Реакция меди с соляной кислотой. Последний вопрос для знатоков

Взаимодействие цинка с соляной кислотой I ЕГЭ по химииСкачать

Взаимодействие цинка с соляной кислотой I ЕГЭ по химии
Поделиться или сохранить к себе: