Линейное дифференциальное уравнение (*) назовём уравнением с постоянными коэффициентами, если в этом уравнении коэффициенты постоянны, то есть ai(x)=const. Тогда соответствующее однородное уравнение L(y)=0 будет иметь вид
. (6)
Решение уравнения (6) будем искать в виде y = e rx . Тогда y’ = r·e rx , y» = r 2 ·e rx ,…, y ( n ) = r n ·e rx . Подставляя в (6), получаем
Пример №1 . Для уравнения y»-3y’ + 2y=0 корни характеристического уравнения r 2 — 3r + 2 = 0 равны r1 = 1, r2 = 2 (корни были найдены через сервис нахождения дискриминанта). Следовательно, фундаментальную систему решений составляют функции y1 = e x , y2 = e 2 x , а общее решение записывается в виде y = C1e x + C2e 2 x .
2. Среди корней характеристического уравнения есть кратные. Предположим, что r1 имеет кратность α, а все остальные различны. Рассмотрим вначале случай r1 = 0. Тогда характеристическое уравнение имеет вид:
an(x)·r n +an-1(x)·r n-1 + . + an-α(x)·r α =0
так как в противном случае r не являлось бы корнем кратности α. Следовательно, дифференциальное уравнение имеет вид:
an(x)·y (n) +an-1(x)·y (n-1) + . + an-α(x)·y α =0
то есть не содержит производных порядка ниже α. Этому уравнению удовлетворяют все функции, у которых производные порядка α и выше равны нулю. В частности, таковыми являются все полиномы степени не выше α-1, например,
1, x, x 2 , …, x α-1 . (9)
Покажем, что данная система линейно независима. Составив определитель Вронского этой системы функций, получим
Пример №2 . Для уравнения y»’-4y»+4y’ = 0 характеристическое уравнение r 3 -4r 2 + 4r = 0 имеет корни r=0 кратности 1 и r=2 кратности 2, так как r 3 -4r 2 + 4r = r(r-2) 2 , поэтому фундаментальной системой решений исходного уравнения является система функций y1 = 1, y2 = e 2 x , y3 = xe 2 x , а общее решение имеет вид y = C1 + C2e 2 x + C3xe 2 x .
3. Среди корней характеристического уравнения есть комплексные корни. Можно рассматривать комплексные решения, но для уравнений с действительными коэффициентами это не очень удобно. Найдём действительные решения, соответствующие комплексным корням. Так как мы рассматриваем уравнение с действительными коэффициентами, то для каждого комплексного корня rj = a+bi кратности α характеристического уравнения комплексно сопряжённое ему число rk = a-bi также является корнем кратности α этого уравнения. Соответствующими этим корням парами решений являются функции yj l =x l ·e (a+b·i)x и yk l =x l ·e (a-b·i)x , l=0,1. α-1. Вместо этих решений рассмотрим их линейные комбинации
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Дифференциальные уравнения высших порядков: ЛОДУ, примеры решения.
Можно выделить 5 возможных метода для определения y0 — общего решения линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами:
1. В случае, когда все решения характеристического уравнения являются действительными и различными, значит, линейно независимые частные решения принимают вид:
,
а общее решение линейного однородного дифференциального уравнения n-ого порядка с постоянными коэффициентами записывают так:
.
Найти общее решение ЛОДУ 3-го порядка с постоянными коэффициентами:
.
Для начала записываем характеристическое уравнение и находим его корни, перед этим произведя разложение многочлена в левой части равенства на множители методом группировки:
Каждый из трех корней характеристического уравнения являются действительными и различными, значит, общее решение линейного однородного дифференциального уравнения 3-го порядка с постоянными коэффициентами принимает вид:
.
2. Когда каждое решение характеристического уравнения оказывается действительными и одинаковыми, т.е.,
,
значит, линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами принимают вид:
,
а общее решение линейного однородного дифференциального уравнения (ДУ) принимает вид:
Найти общее решение ДУ
.
Характеристическое уравнение этого линейного однородного дифференциального уравнения 4-го порядка выглядит так:
.
Обратившись к формуле бинома Ньютона, переписываем характеристическое уравнение как , из чего видим четырехкратный корень k0 = 2.
Т.о., общим решением заданного ЛОДУ с постоянными коэффициентами является:
.
3. Когда решениями характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами оказываются разные комплексно сопряженные пары , n=2m, тогда линейно независимые частные решения такого линейного однородного дифференциального уравнения принимает вид:
а общее решение записывается так:
Проинтегрировать ЛОДУ 4-го порядка с постоянными коэффициентами .
Характеристическое уравнение этого линейного однородного дифференциального уравнения:
.
Произведя некоторые несложные преобразования и группирования имеем:
Откуда находим 2 пары комплексно сопряженных корней характеристического уравнения и . Тогда, общим решением заданного ЛОДУ n-ого порядка с постоянными коэффициентами является:
4. Когда решениями характеристического уравнения оказываются совпадающие комплексно сопряженные пары , тогда линейно независимые частные решения ЛОДУ n-ого порядка с постоянными коэффициентами выглядят так:
,
а общим решением этого линейного однородного дифференциального уравнения является:
Найти общее решение линейного однородного дифференциального уравнения с постоянными коэффициентами:
.
Первым шагом записываем характеристическое уравнение этого ЛОДУ с постоянными коэффициентами и определяем его корни:
Т.е., решением характеристического уравнения является двукратная комплексно сопряженная пара . Тогда общее решение заданного ЛОДУ с постоянными коэффициентами будет:
.
5. Могут возникнуть любые комбинации случаев, описанных выше, т.е., некоторые корни характеристического уравнения ЛОДУ n-ого порядка с постоянными коэффициентами являются действительными и различными, некоторые являются действительными и совпадающими, некоторые являются различными комплексно сопряженными парами и некоторые совпадающими комплексно сопряженными парами.
Найти общее решение ДУ
.
Характеристическое уравнение этого ЛОДУ с постоянными коэффициентами выглядит так:
.
Многочлен в левой части равенства можно разложить на множители. Из делителей свободного члена вычисляем двукратный корень k1=k2=2 и корень k3=-3. Далее, применяя схему Горнера, приходим к разложению:
.
Из квадратного уравнения находим оставшиеся корни .
Т.о., общее решение заданного ЛОДУ с постоянными коэффициентами выглядит как:
.
Видео:Видеоурок "Нахождение частных решений по виду правой части"Скачать
Дифференциальные уравнения второго порядка
1) Линейные однородные дифференциальные уравнения
второго порядка с постоянными коэффициентами
Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами p и q называется уравнение вида
(8)
Алгебраическое уравнение k 2 + pk + q = 0 называется характеристическим уравнением для данного дифференциального уравнения, а его корни – характеристическими числами (корнями).
Для нахождения общего решения уравнения (8):
1. Запишем соответствующее характеристическое уравнение
2. В соответствии со знаком дискриминанта возможны три случая:
а) D > 0. Тогда характеристическое уравнение имеет два действительных корня k1 ¹ k2, и общее решение уравнения (8) имеет вид
(9)
б) D = 0. Тогда k = k1 = k2 – действительный корень и общее решение уравнения (8) имеет вид
(10)
2)
3)
1. Запишем характеристическое уравнение k 2 + k – 2 = 0.
Найдем его корни
; k1 = –2; k2 = 1.
Так как k1 ¹ k2 – действительные числа, то общее решение находим по формуле (9)
2. Запишем характеристическое уравнение k 2 + 2k + 1 = 0.
Найдем его корни
В этом случае общее решение находим по формуле (10)
3. Запишем характеристическое уравнение k 2 + 4k + 5 = 0.
Найдем его корни
Здесь
Общее решение находим по формуле (11)
Тест 19. Однородным дифференциальным уравнением второго порядка с постоянными коэффициентами является уравнение вида:
1)
2)
3)
4)
5)
Тест 20. Однородным дифференциальным уравнением второго порядка с постоянными коэффициентами является:
1)
2)
3)
4)
5)
Тест 21. При решении однородного дифференциального уравнения второго порядка с постоянными коэффициентами = 0:
1) вводится подстановка вида y = u × v, где u = u(x) и v = v(x) – некоторые неизвестные функции;
2) вводится подстановка вида y = u × x, где u = u(x) – некоторая неизвестная функция;
3) составляется характеристическое уравнение k 2 + pk + q = 0.
Тест 22. Характеристическое уравнение k 2 + pk + q = 0 имеет два различных действительных корня k1 и k2. Тогда общее решение однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид:
1)
2) y = u × x, где u = u(x) – некоторая неизвестная функция;
3)
4)
Тест 23. Характеристическое уравнение k 2 + pk + q = 0 имеет комплексные корни Тогда общее решение однородного диф-
ференциального уравнения второго порядка с постоянными коэффициентами имеет вид:
1)
2) y = u × x, где u = u(x) – некоторая неизвестная функция;
3)
4)
Тест 24. Характеристическое уравнение k 2 + pk + q = 0 имеет равные корни k1 = k2. Тогда общее решение однородного дифферен-
циального уравнения второго порядка с постоянными коэффициентами имеет вид:
1)
2) y = u × x, где u = u(x) – некоторая неизвестная функция;
3)
4)
Тест 25. Характеристическое уравнение k 2 + pk + q = 0 имеет комплексные корни Тогда общее решение однородного диф-
ференциального уравнения второго порядка с постоянными коэффициентами имеет вид:
1)
2) y = u × x, где u = u(x) – некоторая неизвестная функция;
3)
4)
Тест 26. Характеристическое уравнение k 2 + pk + q = 0 имеет D = 0. Тогда общее решение однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид:
1)
2) y = u × x, где u = u(x) – некоторая неизвестная функция;
3)
4)
Тест 27. Характеристическое уравнение k 2 + pk + q = 0 имеет D 2 + Bx + C и т. д.
Пример 10. Определить вид частного решения уравнения
Запишем соответствующее однородное уравнение
1. Характеристическое уравнение k 2 – 4k + 3 = 0 имеет корни k1 = 1; k2 = 3.
2. В правой части данного уравнения функция вида (13)
3. Здесь a = 2 – не является корнем характеристического уравнения; – многочлен первой степени.
Следовательно, частное решение данного неоднородного уравнения надо искать в виде (14), т. е. = e 2x (Ax + B).
2. Пусть в правой части уравнения (12) функция
f(x) (17)
Тогда частное решение уравнения (12) будем искать в виде решений, приведенных в таблице 5.
Если a ± bi не являются корнями соответствующего характеристического уравнения | Если a ± bi – корни характеристического уравнения |
(18) | (19) |
Пример 11. Определить вид частного решения уравнения
Запишем соответствующее однородное уравнение
1. Характеристическое уравнение k 2 + 4k – 2 = 0 имеет корни
2. В правой части данного уравнения функция вида (17)
f(x) т. е. f(x)
3. Здесь a = 0; b = 2. Составленные из этих значений комплексные числа a ± bi = 0 ± 2i не являются корнями характеристического уравнения.
Следовательно, частное решение данного неоднородного уравнения надо искать в виде (18), т. е. или
Тест 34. Характеристическое уравнение k 2 – 4k + 3 = 0, соответ-
ствующее однородному дифференциальному уравнению второго порядка с постоянными коэффициентами имеет корни k1 = 1; k2 = 3. Тогда частное решение соответствующего неоднородного уравнения имеет вид:
1)
2)
3)
4)
5)
Тест 35. Характеристическое уравнение k 2 – 4k + 4 = 0, соответ-
ствующее однородному дифференциальному уравнению второго порядка с постоянными коэффициентами имеет корень k = 2. Тогда частное решение соответствующего неоднородного уравнения имеет вид:
1)
2)
3)
4)
5)
После того, как вид частного решения определен, методом неопределенных коэффициентов находим коэффициенты A и B.
Ответы на тестовые задания
Номер теста |
Правильный ответ |
Ряды
Числовые ряды
Пусть дана числовая последовательность .
(1)
называется числовым рядом, или просто рядом.
Числа называются членами ряда, член an с произвольным номером – общим членом ряда.
Суммы конечного числа членов ряда …, … называются частичными суммами ряда (1). Так как число членов ряда бесконечно, то частичные суммы ряда образуют бесконечную последовательность частичных сумм
(2)
Пример 1. Пусть дана числовая последовательность
. (3)
Тогда последовательность будет иметь вид
…,
Последовательности (3) соответствует ряд
(4)
Пример 2.Рассмотрим ряд
(5)
Найдем его частичную сумму Sn. Имеем
Его частичную сумму можно упростить, если заметить, что
Тест 1. Определить второй член ряда
1)
2)
3)
4)
5)
Ряд (1) называется сходящимся, если последовательность его частичных сумм (2) сходится к какому-нибудь числу S, которое называется суммой ряда (1). Символически
Если же последовательность частичных сумм (2) расходится, то ряд (1) называется расходящимся. Такой ряд суммы не имеет.
Тест 2.Определить частичную сумму S3 ряда 1 + + + +… :
1)
2)
3)
4)
Простейшими примерами числовых рядов, вопрос о сходимости которых решен, являются следующие ряды:
1. – геометрический ряд, который при 1 сходится, при α ≤ 1 расходится.
Пример 3.Исследовать сходимость ряда + + +…+ +… .
Это геометрический ряд, так как q = 1;
5) при
Почему 1285321 студент выбрали МегаОбучалку.
🌟 Видео
Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Решение однородного дифференциального уравнения. Практическая часть. 11 класс.Скачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать
ОДУ. 3 Линейные дифференциальные уравнения с постоянными коэффициентамиСкачать
ЛНДУ II п. со спец. правой ч. (sin, cos)Скачать
Линейные однородные дифференциальные уравнения 2 порядка решают студентыСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Пример решения линейного неоднородного дифференциального уравнения 2 порядкаСкачать
Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать
Линейные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
2214 ЛНДУ. Правая часть - многочлен, среди корней характеристического уравнения нет нулей.Скачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Решение линейного однородного дифференциального уравнения. Практическая часть. 11 класс.Скачать