п.1. Количество корней кубического уравнения
Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. begin f(x)=ax^3+bx^2+cx+d\ f'(x)=3ax^2+bx+c end Если в уравнении (f'(x)=0) дискриминант (D=4b^2-12ac=4(b^2-3ac)gt 0), кубическая парабола имеет две точки экстремума: (x_=frac<-2bpmsqrt>). Если при этом значения функции в точках экстремума (f(x_1)cdot f(x_2)lt 0), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но (f(x_1)cdot f(x_2)=0), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.
Пример 1. Сколько корней имеют уравнения:
1) (x^3+3x^2-4=0) (b^2-3ac=9gt 0 (c=0) ) (f(x)=x^3+3x^2-4 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=-4, f(x_2)=0 ) (f(x_1)cdot f(x_2)=0Rightarrow) два корня | 2) (x^3+3x^2-1=0) (b^2-3ac=9gt 0 ) (f(x)=x^3+3x^2-1 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=-1, f(x_2)=3 ) (f(x_1)cdot f(x_2)lt 0Rightarrow) три корня |
3) (x^3+3x^2+1=0) (b^2-3ac=9gt 0) (f(x)=x^3+3x^2+1 ) (f'(x)=3x^2+6x=3x(x+2) ) (x_1=0, x_2=-2 ) (f(x_1)=1, f(x_2)=5 ) (f(x_1)cdot f(x_2)gt 0Rightarrow) один корень | 4) (x^3+x^2+x+3=0) (b^2-3ac=1-3lt 0 ) Один корень |
п.2. Количество корней произвольного уравнения
Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.
Пример 2. а) Найдите число корней уравнения (frac 1x+frac+frac)
б) Найдите число корней уравнения (frac 1x+frac+frac=k)
Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью (y=1). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=frac1x+frac+frac $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: (xneleft)
Все три точки – точки разрыва 2-го рода. begin lim_left(frac1x+frac+fracright)=-infty-1-frac13=-infty\ lim_left(frac1x+frac+fracright)=+infty-1-frac13=+infty\ lim_left(frac1x+frac+fracright)=1-infty-frac12=-infty\ lim_left(frac1x+frac+fracright)=1+infty-frac12=+infty\ lim_left(frac1x+frac+fracright)=frac13+frac12-infty=-infty\ lim_left(frac1x+frac+fracright)=frac13+frac12+infty=+infty end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные (x=0, x=1, x=3) – точки разрыва 2-го рода
2. Горизонтальные: begin lim_left(frac1x+frac+fracright)=-0-0-0=-0\ lim_left(frac1x+frac+fracright)=+0+0+0=+0\ end Горизонтальная асимптота (y=0)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: (k=0), нет.
4) Первая производная $$ f'(x)=-frac-frac-fraclt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.
5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.
6) Точки пересечения с OY – нет, т.к. (x=0) – асимптота
Точки пересечения с OX – две, (0lt x_1lt 1,1lt x_2lt 3)
7) График
Получаем ответ для задачи (а) 3 корня.
Решаем более общую задачу (б). Передвигаем горизонталь (y=k) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При (klt 0) — три корня
При (k=0) — два корня
При (kgt 0) — три корня
Ответ: а) 3 корня; б) при (k=0) два корня, при (kne 0) три корня.
Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ sqrt+sqrt=a $$ имеет по крайней мере одно решение.
Исследуем функцию (f(x)=sqrt+sqrt)
ОДЗ: ( begin x-1geq 0\ 10-2xgeq 0 end Rightarrow begin xgeq 1\ xleq 5 end Rightarrow 1leq xleq 5 )
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: (f(1)=0+sqrt=2sqrt, f(5)=sqrt+0=2)
Первая производная: begin f'(x)=frac<2sqrt>+frac<2sqrt>=frac<2sqrt>-frac<sqrt>\ f'(x)=0 text 2sqrt=sqrtRightarrow 4(x-1)=10-2xRightarrow 6x=14Rightarrow x=frac73\ fleft(frac73right)=sqrt+sqrt=sqrt+sqrt<frac>=frac<sqrt>=2sqrt end Промежутки монотонности:
(x) | 1 | (1; 7/3) | 7/3 | (7/3; 5) | 5 |
(f'(x)) | ∅ | + | 0 | — | ∅ |
(f(x)) | (2sqrt) | (nearrow ) | max (2sqrt) | (searrow ) | 2 |
Можем строить график:
(y=a) — горизонтальная прямая.
Количество точек пересечения (f(x)) и (y) равно количеству решений.
Получаем:
$$ alt 2 $$ | нет решений |
$$ 2leq alt 2sqrt $$ | 1 решение |
$$ 2sqrtleq alt 2sqrt $$ | 2 решения |
$$ a=2sqrt $$ | 1 решение |
$$ agt 2sqrt $$ | нет решений |
По крайней мере одно решение будет в интервале (2leq aleq 2sqrt).
п.3. Решение неравенств с построением графиков
Пример 4. Решите неравенство (fracgt frac)
Разобьем неравенство на совокупность двух систем.
Если (xgt 1), то (x-1gt 0), на него можно умножить слева и справа и не менять знак.
Если (xlt 1), то (x-1lt 0), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: (xgt 0)
Получаем совокупность: begin left[ begin begin xgt 1\ 2+log_3 xgtfrac end \ begin 0lt xlt 1\ 2+log_3 xltfrac end end right. \ 2+log_3 xgt fracRightarrow log_3 xgt fracRightarrow log_3 xgt frac\ left[ begin begin xgt 1\ log_3 xgtfrac end \ begin 0lt xlt 1\ log_3 xltfrac end end right. end Исследуем функцию (f(x)=frac=frac=1-frac)
Точка разрыва: (x=frac12) – вертикальная асимптота
Односторонние пределы: begin lim_left(1-fracright)=1-frac=+infty\ lim_left(1-fracright)=1-frac=-infty end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: (y=1) begin lim_left(1-fracright)=1-frac=1+0\ lim_left(1-fracright)=1-frac=1-0 end На минус бесконечности кривая стремится к (y=1) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=left(1-fracright)’=fracgt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-frac $$ Одна критическая точка 2-го порядка (x=frac12)
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Решение №1631 На рисунке изображён график функции y = f(x), определённой на интервале (−4; 4).
На рисунке изображён график функции y = f(x), определённой на интервале (−4; 4). Найдите корень уравнения f ‘(x) = 0.
Источник задания: fipi.ru
Найдите корень уравнения f ‘(x) = 0, значит найти значение х, в котором производная функции равна 0.
Производная равна 0 в точках максимума и минимума, здесь всего одна такая точка:
х = 2
Ответ: 2.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 1
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время
В отзыве оставляйте контакт для связи, если хотите, что бы я вам ответил.
Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Производная функции. Геометрический смысл производной
Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.
В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.
Производная — это скорость изменения функции.
На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?
Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.
Вот другой пример.
Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:
На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.
Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?
На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.
Производная функции обозначается .
Покажем, как найти с помощью графика.
Нарисован график некоторой функции . Возьмем на нем точку A с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.
Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.
Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .
Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.
Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника
Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике.
Есть и другое важное соотношение. Вспомним, что прямая задается уравнением
Величина в этом уравнении называется угловым коэффициентом прямой. Она равна тангенсу угла наклона прямой к оси .
Мы получаем, что
Запомним эту формулу. Она выражает геометрический смысл производной.
Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.
Другими словами, производная равна тангенсу угла наклона касательной.
Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.
Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.
В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.
В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.
Вот что получается:
Если функция возрастает, ее производная положительна.
Если убывает, ее производная отрицательна.
А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.
Точка — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».
В точке — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».
Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.
Если производная положительна, то функция возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
возрастает | точка максимума | убывает | точка минимума | возрастает |
+ | 0 | — | 0 | + |
Ты нашел то, что искал? Поделись с друзьями!
Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.
Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:
В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала — и после точки продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.
Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.
А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных.
💡 Видео
Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать
ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать
Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать
Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать
Функция "Корень n-й степени из х"Скачать
Урок 13. Применение производной к построению графиков функций. Алгебра 11 классСкачать
Математический анализ, 16 урок, Исследование функции и построение графикаСкачать
Производная функции. 10 класс.Скачать
7 класс, 35 урок, Графическое решение уравненийСкачать
Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Геометрический смысл производной. Уравнение касательнойСкачать
Отбор корней тригонометрического уравнения с помощью графикаСкачать
СЛОЖИТЕ ДВА КОРНЯСкачать
Исследование функций с помощью производной. Практическая часть. 10 класс.Скачать
Найти корень уравнения на заданном интервале (MathCad)Скачать
АЛГЕБРА С НУЛЯ — Точки Экстремума ФункцииСкачать
Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать