Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Вопрос по алгебре:

Координаты вершины параболы, заданной уравнением у = — х(2) — 4х +1, равны:
1) (-2;5)
2) (2;-3)
3) (4;1)
4) (0;1

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 2

Х нулевое = -b/2a => х нул. = 4-1 *2 = -2
y нулевое = ax^2 -(+) bx -(+)c => y нул = — (-2)^2 -4 *(-2) +1 = 5

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

Видео:Квадратичная функция. Вершина параболы и нули функции. 8 класс.Скачать

Квадратичная функция. Вершина параболы и нули функции. 8 класс.

Координаты вершины параболы онлайн

Парабола — это функция, заданная уравнением:

Её график имеет следующий вид:

Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Причем, в зависимости от знака коэффициента , ветви параболы направлены вверх (если ) или вниз (если ).

В школьном курсе алгебры возникает задача нахождения координат вершины параболы. Их можно найти по формулам:

Вершина параболы, отмечена оранжевой точкой на приведённом выше графике.

Наш онлайн калькулятор позволяет найти координаты вершины параболы с описанием подробного хода решения на русском языке. Для работы калькулятора, необходимо ввести уравнение параболы и указать её переменную. Уравнение параболы можно вводить в различных форматах, а коэффициентами могут быть не только числа или дроби, но и параметры. Нажмите на кнопку «Примеры», расположенную на панели калькулятора, чтобы посмотреть различные форматы ввода.

Видео:КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Как найти вершину параболы: три формулы

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Видео:Как найти вершину параболы?Скачать

Как найти вершину параболы?

Нахождение вершины параболы: способы, примеры, советы

График функции y = ax 2 + bx + c, где a — первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0.

Например, y =x 2 –8 x +15;

находим первый, второй коэффициенты и свободный член;

подставляем значения a и b в формулу;

вычисляем значения y;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x 2 –6x+5

1) Приравниваем к нулю:

2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x 2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина — точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f'(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f'(x) = (4x²+16x-17)’ = 8x+16 =0

Координаты вершины параболы заданной уравнением y x 2 4x 1 равны

Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Построение параболы

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2 +11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

X5,5
Y

2) Заполняем таблицу

Так как парабола имеет осевую симметрию, то можно считать только значения справа или слева от вершины. Лучше считать те значения, которые ближе к 0, так удобнее. В нашем случае эти значения 4 и 5.

X455,567
Y-4-6-6,25-6-4

Видео:Вариант 57, № 4. Координаты вершины параболы. Пример 2Скачать

Вариант 57, № 4. Координаты вершины параболы. Пример 2

Советы

Правильно находите коэффициенты.

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Видео

Это видео поможет вам научиться находить вершину параболы

📹 Видео

Вершина параболы | Квадратичная функция | Алгебра I (3 видео)Скачать

Вершина параболы | Квадратичная функция | Алгебра I (3 видео)

Парабола. Квадратичная функцияСкачать

Парабола. Квадратичная функция

Вариант 58, № 4. Координаты вершины параболы. Пример 1Скачать

Вариант 58, № 4. Координаты вершины параболы. Пример 1

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Функция y=x2 и её график – 8 класс алгебраСкачать

Функция y=x2 и её график – 8 класс алгебра

Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Квадратичная функция за 5 минутСкачать

Квадратичная функция за 5 минут

Парабола. Квадратичная функция. Как строить?Скачать

Парабола. Квадратичная функция. Как строить?

Вершина параболы и ось симметрии. ПримерСкачать

Вершина параболы и ось симметрии. Пример

Парабола | Квадратный трёхчлен #2 | Ботай со мной #021 | Борис ТрушинСкачать

Парабола | Квадратный трёхчлен #2 | Ботай со мной #021 | Борис Трушин

213. Фокус и директриса параболы.Скачать

213. Фокус и директриса параболы.

Построить график функции y=x2. Парабола.Скачать

Построить график функции y=x2. Парабола.

№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать

№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2

56. Как найти вершину параболыСкачать

56. Как найти вершину параболы
Поделиться или сохранить к себе: