Координаты вершин и уравнения диагоналей квадрата

Задача 31255 Известна точка пересечения диагоналей.

Условие

Координаты вершин и уравнения диагоналей квадрата

Известна точка пересечения диагоналей квадрата K(2,5; 4,5)
и уравнение одной из его сторон
x -4y + 24 = 0
. Найти
координаты вершин квадрата и составить уравнения его
диагоналей.

Все решения

Координаты вершин и уравнения диагоналей квадрата

Уравнение стороны запишем в виде
y=(1/4)x+6
k=1/4
tg α =1/4
Тогда
уравнение диагонали:
y=k_(1)x+b
tg β =k_(1)

tg( β — α )=(tg β -tg α )/(1+tg β *tg α )

y=(5/3)x+b — уравнение диагонали

Подставим координаты точки К

Диагонали взаимно перпендикулярны.
Значит уравнение второй диагонали
y=(-3/5)x+b
Подставим координаты точки К
4,5=(-3/5)*2,5+b
b=6

Координаты одной вершины получим как координаты точки пересечения стороны х-4у+24=0 и диагонали у=(5/3)х+(1/3)
<х-4у+24=0
<у=(5/3)х+(1/3)
x=4
y=7

Координаты второй вершины получим как координаты точки пересечения стороны х-4у+24=0 и диагонали у=(-3/5)х+6
<х-4у+24=0
<у=(-3/5)х+6
x=0
y=6

Координаты двух других точек можно найти из симметрии.

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Уравнение квадрата в декартовой системе координат.

Проанализируем расположение квадрата на координатной плоскости.

В общем случае уравнение квадрата в декартовой (прямоугольной) системе координат принимает вид:

где точка О`(a;b)точка пересечения диагоналей квадрата;

d – длина диагонали квадрата.

Координаты вершин и уравнения диагоналей квадрата

В частном случае, когда точка О(0;0) — начала координат, является одновременно и точкой пересечения диагоналей квадрата, уравнение квадрата принимает вид:

где dдлина диагонали квадрата.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Раздел 1

Задача. Пусть точка А(1; 3) — вершина квадрата ABCD, а его диагональ BD лежит на прямой х + 2у — 12 = 0. Найти:

а) координаты вершин В, С и D;

b) уравнения сторон АВ, ВС, CD и AD.

Указание. Из школьного курса геометрии известны следующие свойства диагоналей квадрата, которые будут использованы при решении этой задачи.

Диагонали квадрата: 1) взаимно перпендикулярны; 2) делятся точкой своего пересечения — центром квадрата — пополам; 3) равны.

Решение: 1. Найдем уравнение прямой, на которой лежит АС — вторая диагональ квадрата. Вспомним, что уравнение любой невертикальной прямой может быть приведено к виду у = kx + b, где параметр k — угловой коэффициент этой прямой.

В силу свойства диагоналей квадрата угловые коэффициенты =-0,5 и kBD прямых АС и BD связаны соотношением

Найдем угловой коэффициент kBD. Для этого выразим у через х из данного уравнения прямой BD: 2у = — х + 12, откуда у =-0,5 х + 6. Итак, kBD =-0,5. Поэтому из соотношения (1) получим, что kAC=2.

Теперь уже легко найти уравнение прямой АС. Нам известны координаты ее точки А и угловой коэффициент kAC. Используем уравнением прямой, проходящей через данную точку в данном направлении:

Подставим в это уравнение числовые данные нашей задачи: xA = 1, уА = 3, kAC=2. Получим у — 3 = 2(х — 1) или (после упрощений)

AC: у = 2х + 1.

2. С помощью свойства 2) диагоналей квадрата найдем координаты центра Е квадрата — точки пересечения его диагоналей.

Поскольку точка Е лежит на диагонали АС, ее координаты удовлетворяют уравнению прямой АС; аналогично рассуждая, получим, что координаты точки Е должны одновременно удовлетворять и уравнению прямой BD. Таким образом, координаты точки Е должны удовлетворять системе из уравнений прямых АС и BD

Координаты вершин и уравнения диагоналей квадрата

(первое — уравнение прямой АС, второе — прямой BD).

Далее, вычитая второе уравнение из первого, получим: 0=2,5x-5. Значит х = 2. Подставим найденное значение х в любое из уравнений системы, например, в первое. Найдем, что у = 5.

Итак, мы нашли координаты точки Е, центра квадрата: хЕ = 2, уЕ = 5, т.е. Е(2; 5).

3. Найдем длину отрезка АЕ — половину диагонали квадрата, а затем воспользуемся тем, что и остальные вершины квадрата находятся от его центра E на таком же расстоянии (свойства 2) и 3) диагоналей), т.е. что все вершины квадрата лежат на окружности радиуса АЕ с центром в точке Е

B
A

Координаты вершин и уравнения диагоналей квадрата

Подставив в правую часть этой формулы числовые значения координат точек А и Е, получим, что

Координаты вершин и уравнения диагоналей квадрата

Уравнение окружности радиуса АЕ с центром в точке Е записывается в виде

Подставив в него числовые значения радиуса АЕ и координат центра Е, получим уравнение окружности, проходящей через все вершины квадрата:

Теперь с помощью простого рассуждения находим по очереди координаты всех вершин квадрата.

Точки А и С лежат на пересечении найденной окружности и прямой АС, это общие точки указанных окружности и прямой. Значит, координаты этих точек — решения системы уравнений окружности и прямой:

Координаты вершин и уравнения диагоналей квадрата

Координаты вершины А мы знаем, поэтому будем искать вершину С.

Подставим во второе уравнение системы вместо у его выражение 2х + 1 из первого уравнения. Получим:

(х — 2) 2 + (2х + 1 — 5) 2 = 5,

откуда (х — 2) 2 + (2х — 4) 2 = 5, поэтому (х — 2) 2 + 4(х — 2) 2 = 5, т.е. 5(х — 2) 2 = 5, значит (х — 2) 2 = 1. Если квадрат числа равен 1, это число равно либо 1, либо (-1). Поэтому х — 2 = 1 и тогда х = 3, либо х — 2 = -1 и тогда х = 1.

Во втором случае мы получили известную нам абсциссу вершины А (а из первого уравнения системы получим ординату этой вершины), а первый случай дает нам абсциссу вершины С: хС = 3. Тогда из первого уравнения системы найдем ординату вершины С: уС = 2×3 + 1 = 7. Итак, найдена вершина С(3; 7).

Аналогично, для нахождения координат вершин В и D надо решить систему, состоящую из уравнений прямой BD и той же окружности:

Координаты вершин и уравнения диагоналей квадрата

Выразим из первого уравнения х через у: х = 12 — 2у.и подставим полученное выражение во второе уравнение системы. Получим (аналогично решению предыдущей системы) 4(у — 5) 2 + (у — 5) 2 = 5, откуда либо у — 5 = 1 и тогда у = 6, либо у — 5 = -1 и тогда у = 4.

При у = 6 первое уравнение системы дает х = 12 — 2у = 12 — 12 = 0, а при у= 4 аналогично получаем, что х = 4.

Итак, получены два решения системы, пары (0; 6) и (4; 4). Одно из этих решений — координаты точки В, а второе — точки D. Поскольку обе эти вершины совершенно равноправны, мы можем любую из них обозначить буквой В, тогда вторая будет вершиной D. Вся разница в том, идут ли вершины А, В, С и D в порядке обхода контура квадрата по или против часовой стрелки, что для решения нашей задачи безразлично; просто надо выбрать одно из этих направлений произвольно.

Мы будем считать, что вершины квадрата таковы: B(0; 6); D(4; 4).

4. Нам осталось найти уравнения сторон квадрата. Для этого вспомним уравнение прямой, проходящей через точки М(хМ; уМ) и N(xN; yN):

Координаты вершин и уравнения диагоналей квадрата(2)

и подставим в него координаты соответствующих вершин квадрата.

Уравнение прямой АВ получим, если в формуле (2) вместо точек М и N возьмем точки А и В:

Координаты вершин и уравнения диагоналей квадрата.

Подставляя в это уравнение координаты вершин А(1; 3) и В(0; 6), находим:

Координаты вершин и уравнения диагоналей квадратаили y-3=-3(x-1), откуда y=-3x+6.

Аналогично получаем уравнения других сторон. Теперь можно сделать чертеж.

Ответ: а) В(0; 6); С(3; 7); D(4; 4);

BC: Координаты вершин и уравнения диагоналей квадрата

DA: Координаты вершин и уравнения диагоналей квадрата

Замечание. Если иначе выбрать точки B и D (cм. п.3 решения), в ответе надо поменять местами: в п. а) — координаты точек В и D; в п. b) — уравнения прямых АВ и CD, а также уравнения прямых ВС и CD.

Дата добавления: 2014-12-02 ; просмотров: 1393 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

📸 Видео

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

№931. Начертите квадрат MNPQ так, чтобы вершина Р имела координаты (-3; 3), а диагонали квадратаСкачать

№931. Начертите квадрат MNPQ так, чтобы вершина Р имела координаты (-3; 3), а диагонали квадрата

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

143 Координаты вершин квадрата (250)Скачать

143 Координаты вершин квадрата (250)

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравненияСкачать

№974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3; 1). Напишите уравнения

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.Скачать

ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.

Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)Скачать

Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)
Поделиться или сохранить к себе: