Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.
- Найти уравнение плоскости
- Ввод данных в калькулятор для составления уравнения плоскости
- Дополнительные возможности калькулятора для вычисления уравнения плоскости
- Теория. Уравнение плоскости.
- Уравнение плоскости онлайн
- Предупреждение
- Уравнение плоскости, проходящей через три точки
- Уравнение плоскости, проходящей через одну точку и имеющий нормаль n
- Уравнение плоскости через координаты вектора нормали и точки: онлайн-калькулятор
- Как найти уравнение плоскости через координаты вектора нормали и точки с помощью онлайн-калькулятора
- Материалы, которые помогут вам лучше разобраться в теме:
- Уравнение плоскости через точку перпендикулярно вектору онлайн
- 🎬 Видео
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Найти уравнение плоскости
Выберите метод решения исходя из имеющихся в задаче данных:
В задаче известны:
Ввод данных в калькулятор для составления уравнения плоскости
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления уравнения плоскости
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Уравнение плоскости.
Плоскость — поверхность, содержащая полностью каждую прямую, соединяющую любые её точки
В зависимости от условий задачи уравнение плоскости можно составить следующими способами:
- Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно составить по следующей формуле
x — x 1 | y — y 1 | z — z 1 | = 0 |
x 2 — x 1 | y 2 — y 1 | z 2 — z 1 | |
x 3 — x 1 | y 3 — y 1 | z 3 — z 1 |
Если заданы координаты точки A( x 1, y 1, z 1) лежащей на плоскости и вектор нормали n = , то уравнение плоскости можно составить по следующей формуле:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Видео:Координаты вектора. 9 класс.Скачать
Уравнение плоскости онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Векторы. Метод координат. Вебинар | МатематикаСкачать
Уравнение плоскости, проходящей через три точки
Рассмотрим цель − вывести уравнение плоскости, проходящей через три различные точки M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), не лежащие на одной прямой. Так как эти точки не лежат на одной прямой, векторы и не коллинеарны. Следовательно точка M(x, y, z) лежит в одной плоскости с точками M1, M2, M3 тогда и тольно тогда, когда векторы M1M2, M1M3 и компланарны. Но векторы M1M2, M1M3, M1M компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Используя смешанное произведение векторов M1M2, M1M3, M1M в координатах, получим необходимое и достаточное условие принадлежности точки M(x, y, z) к указанной плоскости:
Разложив определитель в левой части выражения, например, по первому столбцу и упростив, получим уравнение плоскости в общей форме, проходящий по точкам M1, M2, M3:
Пример 1. Построить уравнение плоскости, проходящую через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2).
(1) |
Подставляя координаты точек A, B, C в (1), получим:
Разложим определитель по первому столбцу:
Уравнение плоскости, проходящей через точки A(1, 2, 1), B(4, 5, -4), С(2, 1, 2) имеет вид:
Видео:Математика без Ху!ни. Уравнение касательной.Скачать
Уравнение плоскости, проходящей через одну точку и имеющий нормаль n
Пример 2. Построить плоскость, проходящую через точку M0(-1, 2, 1) и имеюший нормаль n(1, 4/5, 1).
(2) |
Подставляя координаты векторов M0 и n в (2), получим:
Видео:Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать
Уравнение плоскости через координаты вектора нормали и точки: онлайн-калькулятор
Плоскость — это бесконечная поверхность с принадлежащими ей прямыми, через которые проходят любые две ее точки. Нормалью к кривой в указанной точке является прямая, расположенная перпендикулярно к касательной прямой в заданной точке кривой.
Если указаны координаты точки A ( x 1 , y 1 , z 1 ) , принадлежащей плоскости, и вектор нормали n = , то уравнение плоскости соответствует формуле:
A ( x — x 1 ) + B ( y — y 1 ) + C ( z — z 1 ) = 0 .
Чтобы найти уравнение плоскости, перпендикулярной вектору онлайн, необходимо:
- указать значение точки A ;
- заполнить значение вектора;
- воспользоваться кнопкой «Рассчитать».
Видео:9 класс, 2 урок, Координаты вектораСкачать
Как найти уравнение плоскости через координаты вектора нормали и точки с помощью онлайн-калькулятора
Рассмотрим пример, наглядно демонстрирующий работу с онлайн-калькулятором. Пусть нужно найти уравнение плоскости по вектору нормали к ней и координатам точки, лежащей в плоскости. Для этого в онлайн-калькуляторе просто зададим известную точку и соответствующий вектор (нормаль):
Впишем значения в пустые поля и нажмем «Рассчитать» (значения взяты произвольно):
После этого калькулятор автоматически выдаст подробное решение с ответом:
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Материалы, которые помогут вам лучше разобраться в теме:
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Уравнение плоскости через точку перпендикулярно вектору онлайн
Сервис предназначен для геометрических вычислений, которыми пользуются учащиеся школ и студенты университетов для подготовки к занятиям.
Решение задачи с помощью онлайн-калькулятора имеет преимущества:
- формула в основе автоматических подсчетов дает точный ответ без ошибок и опечаток;
- нет необходимости искать нужный способ расчета;
- пользователю доступно подробное решение;
- производить расчеты можно неограниченное количество раз бесплатно.
Пошаговые вычисления позволяют учащемуся вникнуть в процесс решения задачи по геометрии и справляться с заданиями самостоятельно. Подготовка к занятиям благодаря калькулятору занимает меньше времени и происходит более продуктивно.
🎬 Видео
Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать
9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать
ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Видеоурок "Нормальное уравнение прямой"Скачать
Нахождение координат вектора. Практическая часть. 9 класс.Скачать
Уравнение прямой в пространстве. Практическая часть. 11 класс.Скачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Направляющий и нормальный вектор прямой на плоскости | Векторная алгебраСкачать
УРАВНЕНИЕ ПРЯМОЙСкачать