Метод конверсии состоит в окислении метана водяным паром или кислородом по следующим основным реакциям:
CH4 + H2O CO + 3H2 – Q (1)
CH4 + CO2 2CO + 2H2 – Q (2)
CH4 + ½O2 CO + 2H2 + Q (3)
CH4 + 2O2 CO2 + 2H2O + Q (4)
CO + H2O CO2 + H2 + Q (5)
Выбор окислителей определяется экономичностью процесса. Полное превращение метана практически достигается при температуре выше 1200°C. В избытке водяного пара протекает следующая реакция:
CH4 + 2H2O CO2 + 4H2 – 165 кДж (6)
При низких температурах реакция (1) смещается влево, а (5) – вправо. Значит, в конечной газовой фазе будет находиться большое количество CH4. При высоких температурах наоборот – большое количество CO. Отсюда одноступенчатый процесс (6) невыгоден, и процесс проводят в 2 стадии: (1) + (5).
I стадия – окисление CH4.
Эта стадия может протекать гомогенно и гетерогенно (в присутствии катализатора). Механизм гомогенной конверсии метана может заключаться во взаимодействии пара как с метаном, так и с продуктами его разложения.
В присутствии кислорода
Эти реакции протекают при t > 1000°C.
В условиях гетерогенно-каталитического процесса значительно снижается температура процесса. В этом случае механизм следующий:
CH4 C + 2H2
C + H2O CO + H2
CH4 + H2O CO + 3H2
Лучшими катализаторами для реакции конверсии является никелевый катализатор, нанесённый на оксид алюминия и промотированный MgO и Cr2O3. Однако этот катализатор чувствителен к соединениям серы. Расход пара в присутствии катализатора происходит по стехиометрии, и не происходит выделение углерода.
II стадия – окисление окиси углерода.
Реакция (5) – равновесная и с увеличением температуры смещается влево. Однако, увеличивая концентрацию водяного пара, смещают реакцию вправо. Зависимость % выхода H2 от соотношения H2O/CO доказывает это
Эта реакция не зависит от давления, и этот метод увеличения скорости реакции здесь неприменим. Более того, реакция (5) протекает с выделением тепла, и проведение реакции в 1 ступени приводит к повышению температуры и смещению равновесия влево. Поэтому реакцию проводят в несколько ступеней, при которых происходит следующая последовательность: пропускание реакционной смеси над катализатором – охлаждение для смещения равновесия вправо и закаливания смеси, и цикл повторяют.
На данной стадии для быстрого установления равновесия смесь пропускают над катализатором.
Железохромовый катализатор, промотированный оксидами Al, K, Ca, обеспечивает достаточную степень конверсии CO при 450-500°C – 96-98%. Цинк-хром-медный катализатор обеспечивает конверсию остаточного содержимого CO 0,2-0,4%, работает при 200-300°C, но очень чувствителен к ядам.
Схема процесса конверсии метана следующая
1. Природный газ с содержанием CH4 – 97% поступает в сатуратор (1), где нагревается до 80°C и насыщается водяным паром, затем поступает в теплообменник (2).
2. В теплообменнике (2) газ нагревается до 500°C отходящими конверторными газами, смешивается с кислородом или воздухом и подаётся в конвертор (3).
3. В конверторе (3) сначала идут экзотермические реакции:
CH4 + ½O2 CO + 2H2 + Q
CH4 + 2O2 CO2 + 2H2O + Q
и температура повышается до 1000°C. Затем протекают эндотермические реакции:
CH4 + H2O CO + 3H2 – Q
CH4 + CO2 2CO + 2H2 – Q
Конвертированный газ содержит H2 – 51-54%, N2 (если подавали воздух) – 20%, CO – 20%, CO2 – 7%, CH4 – 0,5%.
4. Затем газ увлажняется в увлажнителе (4), охлаждается до 400-500°C в теплообменнике (2) и поступает в конвертор CO (5).
5. В конверторе CO (5) газ проходит ряд тарелок с катализатором, охлаждаясь между ними конденсатом.
6. Далее проходит через теплообменник (6).
7. И в промывной башне (7) очищается от твёрдой части и от CO, CO2, O2 методом последовательной конденсации.
В итоге получается либо чистый водород в случае использования для конверсии метана чистого кислорода, либо азото-водородная смесь, если используют в качестве окислителя воздух.
Дата добавления: 2015-06-17 ; просмотров: 6558 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Метан CH4 – это предельный углеводород, содержащий один атом углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, легче воды, нерастворим в воде и не смешивается с ней.
Видео:29. Общая реакция горения для всех углеводородов. Как расставить коэффициенты реакции легкоСкачать
Гомологический ряд метана
Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.
Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.
Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.
Название алкана
Формула алкана
Метан
CH4
Этан
C2H6
Пропан
C3H8
Бутан
C4H10
Пентан
C5H12
Гексан
C6H14
Гептан
C7H16
Октан
C8H18
Нонан
C9H20
Декан
C10H22
Общая формула гомологического ряда алканов CnH2n+2.
Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.
В молекуле метана встречаются связи C–H. Связь C–H ковалентная слабополярная. Это одинарная σ-связь. Атом углерода в метане образует четыре σ-связи. Следовательно, гибридизация атома углерода в молекуле метана– sp 3 :
При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:
Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.
Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:
Это соответствует тетраэдрическому строению молекулы.
Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода
Видео:Как решать ОРГАНИЧЕСКИЕ ЦЕПОЧКИ? Основные типы химических реакцийСкачать
Изомерия метана
Для метана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.
Для метана характерны реакции радикального замещение.
1.1. Галогенирование
Метан реагирует с хлором и бромом на свету или при нагревании.
При хлорировании метана сначала образуется хлорметан:
Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:
Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.
Бромирование протекает более медленно.
Реакции замещения в алканах протекают по свободнорадикальному механизму.
Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.
Первая стадия. Инициирование цепи.
Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:
Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.
Вторая стадия. Развитие цепи.
Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.
При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:
Третья стадия. Обрыв цепи.
При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.
Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:
1.2. Нитрование метана
Метан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в метане замещается на нитрогруппу NO2.
Например. При нитровании метана образуется преимущественно нитрометан:
При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:
Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:
Пиролиз метана – промышленный способ получения ацетилена.
Видео:ВСЕ ПРО АЛКАНЫ за 8 минут: Химические Свойства и ПолучениеСкачать
3. Окисление метана
Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).
3.1. Полное окисление – горение
Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.
Уравнение сгорания алканов в общем виде:
При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.
Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:
Эта реакция используется для получения сажи.
3.2. Каталитическое окисление
При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:
Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.
1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета. Реакция больше подходит для получения симметричных алканов. Получить таким образом метан нельзя.
Видео:Реакция метана с хлором в разных соотношениях / Reaction of methane with chlorineСкачать
2. Водный или кислотный гидролиз карбида алюминия
Этот способ получения используется в лаборатории для получения метана.
Видео:Метан. Состав. Строение. Свойства. Получение и применение метанаСкачать
Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.
R–COONa + NaOH→R–H + Na2CO3
Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.
При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:
Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:
Это промышленный процесс получения алканов.
Синтезом Фишера-Тропша можно получить метан:
Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
5. Получение метана в промышленности
В промышленности метан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.
Название: Каталитическая конверсия метана водяным паром Раздел: Рефераты по химии Тип: курсовая работа Добавлен 12:12:23 10 марта 2009 Похожие работы Просмотров: 17718 Комментариев: 20 Оценило: 5 человек Средний балл: 5 Оценка: неизвестно Скачать
В последней четверти XX столетия после разразившегося в начале 70-х годов нефтяного кризиса изменился подход к источникам углеводородного сырья. Человечество осознало, что запасы нефти на Земле небесконечны и невосполняемы. Еще задолго до появления на Земле человека природа создала огромные количества органических веществ, законсервировала их, превратив в наиболее устойчивую форму, и спрятала в недра земли до поры до времени, до разумного использования человеком ее богатств. После энергетического шока 70-х годов взор нефтехимиков обратился в сторону природного газа как альтернативного нефти источника углеводородного сырья. Разведанные запасы природного газа превосходят аналогичные запасы нефти. Кроме того, природный газ можно отнести к возобновляемым источникам энергии и сырья. Значительные количества основных компонентов природного газа — метана и этана — образуются при бактериальном брожении биомассы растительного и животного происхождения, а также в процессах переработки органического сырья.
В настоящее время природный газ используется в основном в энергетических целях: тепловые электростанции на природном газе наиболее экологически чистые, пропанобутановая фракция применяется в качестве бытового топлива, а также как горючее для автотранспорта. В небольших количествах метан используют в металлургической промышленности как восстановитель. Однако степень химической переработки природного газа в ценные продукты остается на низком уровне, а значительная часть попутного нефтяного газа сжигается в факелах, что приводит к невосполнимой потере ценного сырья и порождает сложные экологические проблемы в регионах добычи. Столь расточительное отношение к ископаемым источникам сырья недопустимо и требует незамедлительного создания новых технологий переработки легкого углеводородного сырья.[1]
В настоящее время конверсия метана является основным промышленным методом получения водорода и технологических газов для синтеза аммиака, спиртов и других продуктов. Известны различные способы конверсии метана.От метода конверсии зависят как технологическая, так и энергетическая схемы производства аммиака в целом. Для выбора оптимального варианта необходимо знать состав конвертированного газа, его энтальпию и эксэргию.
Расчет равновесных составов конвертированного газа на основе известных методик требует использования ЭВМ и соответствующего программного обеспечения. Для упрощения этой задачи целесообразно построить номограммы для определения содержания отдельных компонентов в конвертированном газе, а также номограммы для нахождения его энтальпии и эксэргии. В литературе приведены номограммы только для паровой конверсии метана, однако, имеется возможность построения подобных номограмм и для других способов конверсии. [1]
Конверсия метана, являющегося основным компонентом природного газа, представляет собой наиболее экономичный способ получения азотоводородной смеси. Крупнейшие газовые месторождения имеются на Украине, Северном Кавказе, в Средней Азии, Поволжье, Сибири и других районах страны.
Природный газ бесцветен, не имеет запаха, значительно легче воздуха, горюч и взрывоопасен. При транспортировке по трубопроводам в природный газ добавляют меркаптаны, обладающие резким запахом, что позволяет легко обнаружить утечку газа, но создает дополнительные трудности при его переработке, так как меркаптаны — серосодержащие соединения, а сера является ядом для всех катализаторов производства аммиака. [2]
Состав природного газа в зависимости от месторождения изменяется следующим образом: метан — 55-99%, этан — 1-10 (пропан + бутан) — до 10, С5-углеводороды и выше — 1-5%, остальное — азот, углекислый газ, сернистые соединения, гелий.
Высокое содержание гелия в природном газе некоторых месторождений (в частности, для Собинского месторождения Красноярского края содержание гелия достигает 0,6%) делает экономически целесообразным его выделение. Поэтому первичная переработка природного газа должна включать следующие этапы:
1. стандартные процессы осушки (для того, чтобы не образовались газогидратные пробки) и выделения кислых газов СО2 и H2S с последующей утилизацией сероводорода, например в процессе Клауса;
2. выделение азота и гелия;
3. получение чистого метана;
4. производство С2-С5-углеводородов или широкой фракции легких углеводородов (ШФЛУ).
Криогенные процессы разделения углекислого газа, азота и гелия разработаны и широко используются. Однако процессы химической переработки метана в ценные продукты в большинстве случаев находятся в исследовательской стадии или существуют в лабораторных вариантах.
1 ПРОЦЕССЫ ПЕРЕРАБОТКИ МЕТАНА[1]
Так ли инертна молекула метана? Многочисленные синтезы на основе метана представляют огромный практический и теоретический интерес, так как позволяют получать ценнейшие органические соединения из природного газа практически без какой-либо предварительной переработки. Уже в настоящее время освоено промышленное производство большого количества важных продуктов из метана, в частности из него получают хлорсодержащие растворители, сероуглерод, синильную кислоту. В условиях пиролиза метана получают ацетилен и этилен. Каталитическая конверсия метана водяным паром является основным методом производства водорода и синтез-газа (смесь СО и Н2 в различных соотношениях). В свою очередь, синтез-газ в процессе Фишера-Тропша может быть превращен в различные кислородсодержащие соединения (метанол, формальдегид, ацетальдегид, уксусную кислоту, этиленгликоль), олефины, индивидуальные углеводороды, моторные топлива и другие продукты. В 1987 году в Новой Зеландии фирмой «Mobil Oil» был пущен в эксплуатацию завод по производству метанола и жидких углеводородов из продуктов паровой конверсии метана. Это свидетельствует о начале процесса переориентации ведущих нефтеперерабатывающих компаний на ненефтяное сырье.
Новые нетрадиционные методы получения синтез-газа из метана, такие, как электрохимическое окисление или конверсия с углекислым газом в термодиффузионном реакторе, находятся в стадии исследовательской проработки.
Несмотря на многообразие имеющихся теоретических возможностей превращения метана, наибольший интерес исследователей и производителей в последнее время привлекают следующие процессы:
3. прямое каталитическое окисление метана в кислородсодержащие продукты — спирты и формальдегид.
В промышленной практике получили распространение следующие методы конверсии метана: каталитическая конверсия и высокотемпературная (некаталитическая) конверсия. По первому методу конверсию можно проводить в одну и две ступени (соответственно одноступенчатая и двухступенчатая каталитическая конверсия). [3]
Разработка процесса прямого каталитического окисления метана в кислородсодержащие продукты началась еще в начале XX столетия. Несмотря на то что этот процесс термодинамически возможен при атмосферном давлении и комнатной температуре, до сих пор не удалось подобрать эффективные катализаторы. Поэтому в настоящее время этот процесс проводят без катализатора при высоких давлениях, однако выходы полезных продуктов невелики. Следовательно, данный процесс не является в настоящее время перспективным для промышленной реализации. Остановимся подробнее на наиболее привлекательном методе превращения метана — окислительной конденсации метана. [1]
Блок-схема отделения паровоздушной конверсии природного газа в технологической нитке производства аммиака приведена на рис.1.
Рис.1. Принципиальная схема отделения конверсии природного газа в агрегате по производству аммиака:1 – аппарат гидрирования сераорганических соединений; 2 – адсорбер сероводорода; 3 – печь первичного реформинга природного газа (трубчатая печь (Т.П.); 4 – реактор вторичного реформинга (шахтный реактор (Ш.Р.); 5, 6 – конвертеры монооксида углерода I и II ступени; 7 – блок очистки от СО2 ; 8 – метанатор; ТО – теплообменники.
Природный газ вначале проходит через аппараты 1, 2 очистки от сераорганических соединений. В аппарат 1 подается часть производимого в отделении конверсии потока азотоводородной смеси; содержащие серу соединения реагируют с водородом, образуя сероводород, который удаляется из смеси в аппарате 2 при взаимодействии с оксидом цинка, либо адсорбцией на цеолите. Очищенный природный газ смешивается с водяным паром и поступает в реакционные трубы печи первичного реформинга 3 (трубчатой печи), заполненные никелевым катализатором. Здесь происходит превращение большей части СН4 и сопутствующих углеводородов в смесь Н2 , СО и СО2 . Итоговые уравнения основных реакций, протекающих в трубчатой печи можно записать в виде:
СН4 + Н2 О 3 Н2 + СО (1)
СО + Н2 О Н2 + СО2 (2)
Суммарный процесс: СН4 + 2Н2 О 4 Н2 + СО2 (3)
Реакция (1) идет с поглощением теплоты, реакция (2) – с ее выделением. Суммарный тепловой эффект процесса определяется эндотермической реакцией (1), необходимая теплота подводится к реакционным трубам от сжигаемого в межтрубном пространстве природного газа.
Вслед за первичной конверсией природного газа проводится паровоздушная конверсия остаточного количества углеводородов (вторичный реформинг) в шахтном реакторе 4 . Данный аппарат выполняет в рассматриваемой схеме две важные функции: увеличение степени конверсии метана за счет значительного повышения температуры по сравнению с температурой, достигаемой в тепловой печи, и приготовление смеси газов с необходимым содержанием азота для последующего синтеза аммиака. В шахтном реакторе, загруженном никелевым катализатором, последовательно протекают реакции окисления горючей смеси газов кислородом воздуха, подаваемого на входе шахтного реактора, и реакции (1), (2). Среди реакций окисления превалирует реакция
2 Н2 + О2 2 Н2 О , (3)
протекающая до полного исчерпывания кислорода. Реакция (3) преобладает среди других реакций окисления, так как в газовой смеси, поступающей в шахтный реактор, количество водорода значительно превышает количество других горючих газов.
Обе функции шахтного реактора обеспечиваются за счет парадоксального на первый взгляд решения – сжигания части полученного на предыдущей стадии продукта в объеме реактора. В результате происходит адиабатный разогрев смеси, температура резко возрастает, вследствие чего и повышается степень конверсии метана. Весь кислород, содержащийся в подаваемом в шахтном реакторе воздухе, расходуется, и в смеси с продуктами конверсии остаются только другие компоненты воздуха – азот и аргон. Поэтому для приготовления азотоводородной смеси в данной схеме отпадает необходимость в выделении азота из воздуха путем его сжижения и низкотемпературной ректификации.
Выходящая из шахтного реактора смесь после ступенчатого промежуточного охлаждения последовательно проходит реакторы 5 и 6 , в которых происходит практически полная конверсия метана с образованием водорода на селективных катализаторах ( I ступень конверсии в реакторе 5 – на среднетемпературном железо-хромовом катализаторе и II ступень в реакторе 6 – на низкотемпературном цинк-хром-медном катализаторе ), обеспечивающих избирательное протекание реакции (2) при заторможенной реакции (1). Далее полученная азотоводородная смесь освобождается от углекислого газа абсорбцией раствором моноэтаноламина или бикарбоната калия в технологическом блоке 7 . Оставшиеся в смеси незначительные примеси оксидов углерода, являющихся ядами для катализатора синтеза аммиака, нейтрализуют во вспомогательном каталитическом реакторе – метанаторе 8 , в котором реакции (1) и (2) протекают справа налево, превращая оксиды углерода в метан, инертный по отношению к катализатору синтеза аммиака. Из метанатора очищенная азотоводородная смесь идет в отделение синтеза аммиака, небольшая часть смеси поступает в головной аппарат 1 схемы.
3.1 Каталитическая конверсия метана[3]
Каталитическая конверсия метана может быть осуществлена либо в смеси метана с водяным паром, либо в смеси метана с водяным паром и кислородом.
В связи с тем, что реакция конверсии метана с водяным паром сильно эндотермична, для ее осуществления требуется подвод тепла. В промышленности этот процесс проводится в трубчатых печах. В трубы пожаропрочной стали загружается никелевый катализатор, снаружи трубы обогреваются топочными газами. Такой метод конверсии нашел применение в тех случаях, когда требуется получить технический водород с минимальным содержанием азота. Процесс ведется при температуре 800 — 850°С на выходе из слоя катализатора. К 1 м 3 природного газа добавляют обычно 2—2,5 м 3 водяного пара. Остаточное содержание, метана в конвертированном газе составляет 1 — 2%.
Преимущество этого метода заключается в том, что для обогрева труб могут быть использованы любые горючие газы, в том числе отходы производства. Недостатком этого метода являются большие капитальные затраты на сооружение установок и необходимость использования высококачественных легированных сталей.
Если требуется получить смесь водорода с азотом, например для синтеза аммиака, метан конвертируют смесью водяного пара и воздуха, обогащенного кислородом. Часть метана сжигают в реакционной зоне, в результате выделяется тепло, необходимое для протекания эндотермической реакции (3) взаимодействия метана с водяным паром. Процесс ведется в конверторами шахтного типа при температуре 800 — 900°С. Остаточное содержание метана в конвертированном газе составляет не более 0,5%. В настоящее время азотоводородную смесь получают в промышленности одноступенчатой или двухступенчатой конверсией метана.
Одноступенчатая конверсия метана. В зависимости от схемы производства аммиака конверсия природного газа проводится при действии на него водяногопара и кислорода или воздуха, обогащенного кислородом. Конверсия природного газа в присутствии водяного пара и кислорода применяется в тех случаях, когда конвертированный газ используется либо в синтезе метанола и высших спиртов, либо в производстве аммиака, в технологической схеме которого предусмотрено определение промывки газа жидким азотом.
Для получения аммиака в производствах, имеющих станцию медно-аммиачной очистки газа от окиси углерода, применяется конверсия метана с водяным паром и воздухом, обогащенным кислородом. Процесс конверсии метана осуществляется в аппаратных шахтного типа на никелевом катализаторе при температуре 850°С. Технологическая схема одноступенчатой конверсии природного газа подробно описана в последующих главах памятки. Конверсия метана может происходить не только в присутствии водяного пара и кислорода, но и двуокиси углерода по реакции (4). В этом случае конвертированный газ имеет повышенное содержание окиси углерода, что весьма целесообразно при синтезе метанола и высших спиртов. Путем изменения соотношения водяного пара и двуокиси углерода в исходной газовой смеси можно изменить соотношение водорода и окиси углерода в конвертированном газе до 3.
Двухступенчатая конверсия метана. В тех случаях, когда имеются дешевые источники тепла для обогрева реактора, азотоводородную смесь для синтеза аммиака получают методом двухступенчатой конверсии природного газа. Технологическая схема процесса представлена на рис. 3.
1 – трубчатая печь; 2 – конвертор метана второй ступени; 3 – увлажнитель; 4 – котел-утилизатор; 5, 9 – парогазосмесители; 6 – двухступенчатый конвертор окиси углерода; 7 – пароперегреватель; 8 — теплообменник; 10 – аппарат для очистки от соединений серы.
Природный газ под избыточным давлением 0,7 — 0,8 ат поступает в теплообменник 8, в котором подогревается до температуры 380°С за счет тепла газов, исходящих после конверсии окиси углерода. Из теплообменника природный газ подается в аппарат 10, заполненный поглотителем на основе окиси цинка, для связывания соединений серы. Очищенный газ смешивается в аппарате 9 с водяным паром, нагретым до 380°С в пароперегревателе 7 за счет тепла газа после конверсии СО. Парогазовая смесь (отношение пар : газ =5 : 1 ) с температурой 380°С поступает в трубчатую печь 1, снабженную подвешенными трубами, изготовленными из специальной жаропрочной стали. В трубах размещается никелевый катализатор общим объемом 7,5 м 3 . Снаружи трубы обогреваются топочными газами, образующимися при сжигании какого-либо газа. Парогазовая смесь проходит через катализатор сверху вниз, при этом температура постепенно возрастает с 400 до 800°С. Степень превращения метана в первой ступени достигает 70%. Конвертированный газ после первой ступени поступает в конвертор шахтного типа 2, куда добавляется воздух. Остаточный метан почти полностью реагирует на никелевом катализаторе при температуре 850 — 900°С. Конвертированный газ после второй ступени содержит до 0,5% метана. Газ из конвертора метана поступает в увлажнитель 3, затем в котел-утилизатор 4 и далее (при 400°С) в конвертор 6.
В последнее время находят применение усовершенствованные трубчатые печи с двойными трубами. Катализатор помешается в кольцевом сечении, образованном внутренней и наружной трубами. Греющие газы подаются с внешней стороны наружной трубы. Природный газ вместе с паром проходит через катализатор сверху вниз, а полученный конвертированный газ — по внутренней трубе снизу вверх. Такая конструкция аппарата позволяет улучшить условия теплопередачи и увеличить температуру в слоях катализатора, не повышая температуру стенок труб.
3.2 Процесс паровой каталитической конверсии метана
В своей работе я рассматриваю каталитическую конверсию метана водяным паром.
Промышленные печи для каталитической конверсии представляют собой агрегаты с большим числом вертикальных труб диаметром 90 — 130 мм и обогреваемой частью длиной 7 — 10 м . Печное пространство облицовано огнеупорным кирпичом; обогрев печей ведут дымовыми газами, образующимися при сжигании углеводородных газов или нафты в специальных горелках. Распределение потока исходного газа по отдельным трубам, заполненным катализатором, а затем сбор конвертированного газа обеспечиваются системой газоподводящих и газоотводящих труб. В конвективном теплообменнике идет вторичное использование тепла выходящих из печи дымовых газов.
Распределение температур внешней стенки трубы при соответствующем профиле температур обогревающего дымового газа и конвертированного газа внутри реактора при потолочном размещении обогревателей. Только высоколегированные хромоникелевые стали с относительно высоким содержанием углерода дают возможность применять сравнительно высокие давления в современных процессах трубчатой конверсии. В условиях эксплуатации трубы подвергаются воздействию внутреннего давления, массы трубы, термических напряжений. Моменты напряжения, возникающие под воздействием массы труб, заполненных катализатором, действуют в аксиальном направлении и должны быть возможно полнее скомпенсированы соответствующим противовесом или пружинной подвеской. Исключительное значение в трубчатой конверсии имеет безотказная работа коллекторной системы, пигтайлей и некоторых других узлов технологического оборудования.
Каталитической конверсией углеводородов в трубчатых печах можно получать водород или газы для синтеза аммиака, метанола и оксо-синтеза. На рис. 4 показана принципиальная схема технологической цепи получения конвертированного газа различного назначения.[5]
Рис. 4. Блок-схема процесса риформинга метана с получением в качестве целевых продуктов аммиака, водорода, метанола, оксида углерода, продуктов оксосинтеза (Г – горючее для печи; К.П. – конечный продукт); 1 – блок первичного риформинга; 2 – блок вторичного риформинга; 3 – блокIступени конверсии СО ; 4 – блокIIступени конверсии СО ; 5 – система отмывки от СО ; 6 – аппарат тонкой очистки; 7 – аппарат для удаления Н2 ; 8 – компрессор.
Каталитическая конверсия углеводородов (паровая, парокислородная и паро-углекислотная) представляет собой технологическую комбинацию следующих химических реакций (тепловой эффект DH298,16кДж/моль ).
Процесс конверсии протекает на никелевом катализаторе. Выход Н2 на моль израсходованного в процессе пара наибольший для СН4 и снижается с увеличением содержания углерода в молекуле углеводорода.
Равновесная концентрация конвертированного газа прямо пропорциональна температуре, давлению процесса и соотношению пар : углеводород в исходной конвертируемой смеси. Процесс можно проводить в одну стадию. Однако в ряде случаев его целесообразнее вести в две стадии (две ступени).[5]
Первая стадия процесса парового риформинга протекает в трубах, заполненных катализатором, с подводом тепла извне через стенку трубы. Во второй ступени протекает остаточная конверсия метана кислородом по реакции:
Для смещения равновесия реакции конверсии метана вправо, т. е. в сторону получения водорода, применяется избыток водяного пара по сравнению со стехиометрическим соотношением. Кроме того, избыток пара предотвращает выделение элементарного углерода (сажи) и уменьшает процентное содержание метана в конвертированном газе.
Как видно из уравнения, полную конверсию метана можно осуществить в одну стадию с образованием водорода и двуокиси углерода. При низкотемпературной конверсии в продуктах реакции остается значительное количество метана. При повышенных температурах газ содержит в большом количестве окись углерода. И в том и в другом случае для смещения равновесия реакции конверсии метана вправо требуется значительный избыток пара. Расход пара уменьшается при проведении конверсии метана в две стадии.
Поэтому в промышленных условиях целесообразно процесс получения водорода конверсией метана с водяным паром проводить в две стадии (конверсия метана и конверсия окиси углерода).
При высокой температуре происходит термическое разложение метана и его гомологов с выделением углерода. Выделяющийся углерод оседает на катализаторе, происходит так называемое зауглероживание катализатора, в результате чего снижается его активность и происходит преждевременное его разрушение. Увеличивается сопротивление конвертора, а главное—снижается его производительность. Для предотвращения выделения углерода, кроме избытка пара, требуется, чтобы парогазовая смесь находилась в соприкосновейии с поверхностью катализатора ничтожно малое время, недостаточное для воспламенения смеси. Это условие соблюдается, если скорость нагретой газовой смеси до ее поступления на катализатор больше скорости распространения пламени и исключена возможность обратного проникновения пламени с раскаленного катализатора в смесительное и надкатализаторное пространство.[3]
3.3 Схема химических превращений
Используемые для описания химических превращений в трубчатой печи и шахтном реакторе уравнения (1) – (3) являются итоговыми уравнениями реакций, которые фактически отражают баланс химических элементов до и после превращений. Детальный же механизм процесса может быть очень сложным. Например, реакцию метана с водяным паром на поверхности никелевого катализатора можно представить следующей совокупностью стадий:
1. СН4 + Z ZCН2 + Н2 ,
2. ZCН2 + Н2 О ZCНOH + Н2 ,
3.ZCНOHZCO+ Н2 ,
4.ZCOZ+CO,
5. Z + Н2 О ZO + Н2 (равновесная стадия),
6. ZО + CО Z + СО2 (равновесная стадия).
Здесь Z – активный центр на поверхности катализатора.
Для описания процесса конверсии метана итоговыми уравнениями, связывающими исходные вещества СН4 и Н2 О и продукты Н2 , СО, и СО2 , достаточно написать 2 линейно независимых уравнения реакций, например, уравнения (1) и (2). Любое другое уравнение, связывающее эти вещества, можно будет получить из первых двух. Уравнение (2) описывает конверсию СО в аппаратах 5 и 6.
3.4 Физико-химические основы процесса конверсии метана [3]
Конверсия природною газа может быть осуществлена либо термическим разложением метана
либо каталитическим окислением метана водяным паром, кислородом и двуокисью углерода:
Выбор окислителей и их возможные сочетания определяются назначением процесса и технологической схемой дальнейшей переработки полученного газа.
Реакции (1) — (2) практически необратимы. Реакции (3) — (5) являются обратимыми, т. е. в зависимости от условий, в которых они осуществляются, могут проходить как слева направо, так и справа налево.
Вследствие обратимости реакции прямой процесс невозможно осуществить до конца. В самом деле, в обратимых реакциях, например в реакции (3), оба процесса—прямой (взаимодействие метана с водяным паром) и обратный (взаимодействие окиси углерода с водородом) — протекают одновременно. При достаточно высоких температурах и концентрациях метана в газовой смеси скорость прямой реакции гораздо больше, чем скорость обратного процесса. Постепенно скорости прямого и обратного процессов выравниваются и наступает химическое равновесие, при котором в смеси присутствуют как исходные вещества, так и продукты реакции.
Равновесный состав газа для обычно применяемых в промышленности исходных газовых смесей и интервале температур 827—1027°С приведен в табл.1).
С изменением температуры, давления и состава исходной смеси равновесный состав газа также изменяется. При повышении температуры увеличиваются скорости обеих реакций (прямой и обратной), но увеличиваются они в разной степени. В случае реакций, протекающих с поглощением тепла (эндотермических реакций), например реакции (3), скорость прямой реакции возрастает гораздо больше, чем скорость обратной реакции. В результате этого равновесие сдвигается вправо, т. е. в сторону уменьшения содержания метана в конвертированном газе. В случае же реакций, протекающих с выделением тепла (экзотермических реакций), например реакции (5), равновесие сдвигается влево, т. е. степень конверсии окиси углерода снижается.
Таблица 1. Равновесный состав газа в процессе конверсии метана для обычно применяемых в промышленности исходных газовых смесей при абсолютном давлении 1 ат
Температура °С
Состав сухой газовой смеси при равновесии, объемн. %
Изменение давления влияет на равновесный состав газа только тогда, когда в результате реакции изменяется объем газа (при постоянном давлении), т. е. когда общее число молей (объемов) исходных веществ отличается от числа молей (объемов) продуктов реакции. Равновесный состав газа для реакций, протекающий без изменения объема, например, реакции (5), не зависит от давления.
Реакция (3) протекает с увеличением объема: из двух объемов исходной смеси получается четыре объема конвертированного газа, поэтому при повышении давления равновесие смещается влево, т. е. степень конверсии метана снижается. Например, для исходной смеси состава СН4 :H2O= 1 : 2 при 827°С и давлениях 10, 20 и 40 атм содержание метана в конвертированном газе составляет соответственно 5, 10 и 16% (рис. 5).
Для того чтобы остаточное содержание метана в конвертированном газе не увеличивалось при повышении давления, необходимо одновременно повысить температуру. Так, например, чтобы получить при указанном составе исходной смеси газ с остаточным содержанием метана 0.5% при абсолютном давлении 10 атм, нужно повысить температуру до 960°С, а при 20 атм — до 1060°С. Несмотря на это, проведение процесса конверсии при умеренном давлении (20 — 30 атм ) экономически целесообразно, так как в данном случае уменьшается расход энергии на сжатие конвертированного газа, а также снижаются капитальные затраты на сооружение конверсионной установки.
При увеличении концентрации реагирующих веществ происходит также увеличение концентрации образующихся веществ. Для рассматриваемой реакции (3) повышение содержания водяных паров в исходной смеси приведет к смещению равновесия вправо, т. е. к увеличению содержания СО и водорода и уменьшению содержания метана в конвертированном газе. Увеличение количества добавляемого водяного пара особенно важно, когда конверсия метана осуществляется при повышенном давлении. Например, применяя исходную смесь СН4 :H2O= 1 : 4 при давлении 10 атм, можно получить конвертированный газ, содержащий 0,5% метана, при 850°С, т.е. на 110°С ниже, чем при составе исходной смеси 1 : 2 .
Скорость реакции взаимодействия метана с водяным паром, т. е. количество метана, прореагировавшего в единицу времени, в отсутствие катализатора очень мала. Так, при нагревании смеси метана с водяным паром до 700°С и соотношении
СН4 :H2O= 1 : 2 в течение 3 ч только 3% метана превращается в водород.
Рис.5. Зависимость остаточного содержания метана в конвертированном газе от температуры.
Для получения газа, содержащего 0,5% метана, требуется повысить температуру до 1400°С. В производственных условиях конверсия метана должна протекать в течение долей секунды, что достигается путем применения катализаторов.
3.5 Термодинамика И кинетика процесса конверсии метана водяным паром .[5]
Равновесие реакции конверсии метана водяным паром, как реакции эндотермической, с ростом температуры смещается в сторону образования СО и Н2 , а с ростом давления в обратную сторону, т. е. в сторону образования метана.
Рис.6. Зависимость полноты конверсии СН4 и СОyкот температуры
Однако для заданного давления и температуры превращение метана возрастает с ростом содержания пара в исходной газовой смеси (рис. 6). На этом рисунке одновременно видно, как с ростом температуры падает полнота конверсии СО водяным паром – реакции экзотермической. И хотя давление оказывает отрицательное воздействие на превращение метана, наблюдается постоянный рост используемого давления в промышленных процессах паровой конверсии метана (рис. 7).
Рис 7. Применяемое давление газа Р на выходе из трубчатого реактора конверсии природного газа в различные периоды времениt.
Проведение процесса при повышенных давлениях снижает расходы на компрессию полученного синтез-газа, затраты на изготовление аппаратуры, улучшает условия теплопередачи. Развитие этого процесса ограничивается в основном прочностью металла реакционных труб, работающих в жестких условиях высоких температур.
Рис 8. Ограничения по температуреtи давлению Р процесса паровой конверсии углеводорода, обусловленные материалом труб (отношение пар : углерод = 3,5 ; А – расчетные границы для работ труб;yконв– полнота конверсии).
Равновесные соотношения при конверсии метана показывают, как это видно на рис. 8, что для заданного превращения метана при постоянном соотношении водяной пар : углерод повышение давления в процессе означает повышение температуры риформинга, повышение температуры газов, выходящих из трубчатых печей, и повышение температуры стенок реакционных труб. Принципиальное влияние качества труб (срок жизни 10 лет для хромоникелевой стали) на условия проведения паровой конверсии под давлением иллюстрируется данными, приведенными на рис.8.
Наиболее обоснованное и практически оправданное уравнение скорости реакции конверсии метана для атмосферного давления дал Темкин и его ученики. Энергия активации процесса паровой конверсии составляет 129,79 кДж/моль для температурной области 800 — 900°С на никелевой фольге и 100,48 кДж/моль для этой же области температур на никелевом катализаторе, нанесенном на пористом носителе. Кинетические данные используют для расчета аппаратов конверсии, в частности для расчета температур на входе в реактор и выходе из него.
В качестве катализаторов конверсии используют никель, нанесенный на пористый носитель. Содержание никеля в катализаторе может колебаться в широких пределах — от 4 до 35% (масс.). Наиболее стабильными катализаторами для широкого диапазона температур конверсии и работы в экстремальных условиях являются катализаторы, носители для которых не содержат SiО2 , главной их основой является a-Аl2О3 (корунд). В качестве активаторов в них могут содержаться оксиды кальция, титана, магния, хрома. Внутренняя поверхность таких катализаторов колеблется от 5 до 50 м 2 /г . Восстановление нанесенного NiO до металлического никеля происходит в загруженном конверторе водородом или метаном.
Для конверсии легких фракций нефти (нафты) используют щелочные калийсодержащие катализаторы. Использование таких катализаторов дает возможность проводить конверсию нафты при низких соотношениях пар : углерод (3: 1) без выделения сажи.
4.1 Катализаторы конверсии метана
Катализаторами называются такие вещества, которые увеличивают скорость химических реакций. Применение катализатора не вызывает сдвига химического равновесия в ту или иную сторону.
Как установлено многочисленными исследованиями лучшим для процесса конверсии метана является никелевый катализатор.
В свежем катализаторе никель находится в виде окислов. Катализатором же ускоряющим реакции конверсии метана, является металлический никель. Поэтом, перед началом процесса конверсии катализатор необходимо восстановить газом, содержащим водород NiO+H2=Ni+H2O . Катализатор восстанавливается водородом полностью при температуре 300 — 400°С в течение 2—4 ч . При отсутствии водорода катализатор можно также восстановить рабочей смесью (метан и водяной пар или метан, водяной пар и кислород) при 750 — 850°С.
Если никель находится не в виде окислов, а в виде их соединении с окисью алюминия (шпинели), то для его восстановления требуется более высокая температура (800 — 900°С). В этом случае процесс восстановления протекает медленнее. Никель-алюминиевая шпинель (голубовато-зеленоватого цвета) образуется при нагревании катализатора до температуры выше 600°С в среде, не содержащей восстановителей (Н2 и СО ).
Эффективность работы катализатора определяется остаточным содержанием метана в конвертированном газе при определенном количестве подаваемого исходного газа. Нагрузка на катализатор характеризуется объемной скоростью.Объемной скоростью называется количество кубометров исходного газа (сухого), проходящего через 1 м 3 катализатора в час. Объемная скорость выражается в ч -1 . В промышленных условиях катализатор конверсии метана работает в интервале объемных скоростей 250 — 400 ч -1 при 600—1000°С.
Активность никелевого катализатора может снижаться вследствие присутствия в газе соединений серы: Н2S , CS2 и COS. Вещества, снижающие активность катализатора, называются каталитическими ядами. Процесс отравления катализатора Н2S протекает по схеме Ni+H2S—NiS+H2.
Образовавшийся сернистый никель уже не способен ускорять реакцию конверсии метана, в связи с чем активность катализатора снижается. Проведенными исследованиями установлено значительное влияние температуры на отравление катализатора соединениями серы. Показано, что при температуре, равной 600°С, наличие даже небольших количеств соединений серы в газе (5 мг/м 3 серы) приводит к необратимому отравлению и полной потере активности катализатора. С повышением температуры отравляемость катализатора этими соединениями уменьшается. Так, при температуре 700 — 800°С отравление катализатора происходит в значительно меньшей степени и активность его может быть восстановлена в процессе конверсии метана, не содержащего соединений серы. При 850°С и содержании в газе 5 — 7 мг/м 3 серы заметного отравления катализатора не наблюдается.
Конверсия метана может сопровождаться выделением свободного углерода (сажи), что затрудняет проведение процесса. Реакция (1) образования сажи протекает параллельно с основными реакциями в случае недостатка окислителей — водяного пара и кислорода. При этом углерод отлагается не только на поверхности, но и внутри гранул катализатора, что приводит к уменьшению активности и механическому разрушению катализатора и к увеличению гидравлического сопротивления аппарата потоку газа. В отсутствие катализатора образование углерода по реакции (1) начинается при нагревании метана до температуры 800°С, а на восстановленном никелевом катализаторе эта реакция протекает с заметной скоростью уже при 400°С. Воспламенение в объеме (без катализатора) смеси метана с водяным паром и кислородом, применяемой в процессе конверсии природного газа, всегда сопровождается образованием углерода вследствие частичного разложения метана при температуре около 1100°С, развиваемой в пламени. На никелевом катализаторе при достаточном количестве окислителей выделения свободного углерода не происходит. Из сказанного следует, что на нагретый катализатор нельзя подавать природный газ, не смешав его предварительно с водяным паром и кислородом. [3]
Область применения: Катализаторы конверсии метана ГИАП-8, ГИАП-25, ГИАП-36Н применяются для воздушной конверсии газообразных углеводородов в эндотермических генераторах контролируемых атмосфер при температурах 1030-1050 °С. Могут применяться также для воздушной конверсии сжиженных газов (пропан и пропанобутановой фракции) в тех же целях. Используются также в различных отраслях машиностроительной промышленности, где контролируемые атмосферы используются для термообработки металлических изделий и деталей машин.
Основные данные: Катализаторы отвечают требованиям ТУ 11303382-86. Нанесенная часть катализаторов содержит оксиды никеля, алюминия и кальция.
Внешний вид: кирпичики серого цвета (ГИАП-25), цилиндрические гранулы серого цвета (ГИАП-8 и ГИАП-36Н).
Размеры: 32 х32 (ГИАП-25), диаметр 15-18 мм, высота 15-18 мм (ГИАП-8,ГИАП-36Н). Массовая доля никеля в пересчете на оксид никеля: 7.5 + 1.5 % (для ГИАП-8, ГИАП-36Н) и до 12 % (для ГИАП-25).
ДРК – 1 новый вид катализатора, предназначен для паровой и пароуглекислотной конверсии газообразных углеводородов в трубчатых печах крупнотоннажных агрегатов по производству аммиака, метанола, установок получения технического водорода. Катализатор представляет собой промотированный оксид никеля, нанесенный на высокоглиноземистый носитель в виде циллиндрических колец, имеет более высокую активность и стабильность.
Физико-химические характеристики ТУ 2171-94-002038015-97
Нормы марки К-17
Нормы марки К-15
Состав
оксид Ni на носителе Al2 O3
оксид Ni на носителе Al2 O3
Внешний вид
Кольца от светло-серого до темно-серого цвета
Кольца от светло-серого до темно-серого цвета
Насыпная плотность, кг/дм3
1,2±0,2
1,2±0,2
Массовая доля мелочи и гранул с дефектом, %, не более
10
10
Размеры гранул, мм, в пределах:
диаметр наружный
17±2
15±2
диаметр внутренний
8±1
7±1
высота
14±2
12±2
Механическая прочность, разрушающее усилие при раздавливании на торец, среднее, МПа, не менее
30
30
Массовая доля серы в пересчете на SO3,%, не более
0,01
0,01
Массовая доля никеля в пересчете на оксид никеля (NiO), %
12±1
12±1
Термостойкость: число теплосмен от 1000°С до комнатной температуры на воздухе без разрушения гранул, не менее
20
20
Активность: остаточная доля метана при конверсии с водяным паром природного газа при соотношении пар:газ=2:1 в объемной скорости 6000 час,%, не более при температуре:
Условия эксплуатации
Температура, на выходе трубчатой печи, ºС
790-810
Давление, МПа
3,3-3,6
Объемная скорость, ч -1: с оотношение ПАР:ГАЗ
1500-18003,7-4,0
Остаточная объемная доля метана на выходе из печи, %
9-11
Гарантируемый срок службы, лет
4
5 Расчет процесса конверсии
Рассчитать процесс конверсии метана водяным паром по следующим данным:
Производительность по метану
1000 м 3 /час
Состав газа
метан – 98%
азот – 2%
Степень конверсии
70%
Температура
на входе 105°С
на выходе 900°С
СН+ НО СО + 3Н
1. Расчет термодинамических параметров.
СН
НО
СО
Н2
Н
-74,85
-241,81
-110,53
DS
186,27
188,72
197,55
130,52
DG
-50,85
-228,61
-137,15
1.1. По закону Гесса находим тепловой эффект химической реакции при нормальных условиях:
3.3. Рассчитаем энергию Гиббса на выходе t2=900°С:
4. Найдем константу равновесия:
4.1. Рассчитаем равновесную степень превращения метана. При температуре от 827°С и составе исходной смеси СН4 : Н2 О = 1 : 2 необходимо проводить процесс при абсолютном давлении 10 атм.
т.к. водяной пар в избытке, то РН2О = 2РСН4
Равновесная степень превращения равна 0,8115.
Вывод: равновесная степень превращения метана xe =0,8115 ,степень конверсии a = 0,7 , данный процесс, возможно, провести в указанных условиях.
5. Составим материальный баланс.
Приход
Расход
Исходное вещество
m, кг
V,м 3
Продукт
m, кг
V,м 3
СН4
714,29
1000
СН4
214,29
300
N2
25,51
20,41
N2
25,51
20,41
Н2 О
1607,14
2000
Н2 О
1044,64
1300
СО
875
700
Н2
187,5
2100
Итого:
2346,94
3020,41
Итого:
2346,94
4420,41
5.1.Найдем количество поступающего метана (в час):
по закону эквивалентов
(кг)
Найдем количество конвертируемого метана:
V=0, 7×1000=700 (м 3 )
После реакции осталось:
m(СН4 ) = 714,29 – 500 = 214,29 (кг)
V(СН4 )= 1000 – 700 = 300 (м 3 )
5.2. Найдем необходимое количество воды для осуществления реакции:
В промышленном производстве для осуществления процесса воду и метан берут в отношении 2:1. Исходя из этого условия рассчитаем количество поступающего водяного пара:
V = 2 × 1000 = 2000 (м 3 )
Не прореагировало водяного пара:
m(Н2 О) = 1607,14 – 500 = 214,29 (кг)
V(Н2 О) = 2000 – 700 = 300 (м 3 )
5.3. В реактор поступает :
Т.к. азот не участвует в химической реакции, то на выходе:
5.4. Найдем количество образовавшегося в ходе реакции СО:
5.5. Найдем количество образовавшегося водорода:
Вывод: . Материальный баланс сошелся.
6. Составим энергетический баланс:
Приход
кДж
%
Расход
кДж
%
Q(СН4 )
675,87
4
Q(СН4 )
1224,04
7,2
Q(N2 )
10,16
0,06
Q(N2 )
35,15
0,2
Q(Н2 О)
1156,9
6,87
Q(Н2 О)
4460,2
26,4
Qподв
15029,6
89,07
Q(СО)
1216,5
7,23
Q(Н2 )
3420,87
20,24
Qх.р.
6515,8
38,62
Итого:
16872,53
100%
Итого:
16872,56
100%
6.1. Найдем тепло, которое поступает с исходными веществами – физическое тепло:
где T1– температура на входе, (t1=105C ); Ср – теплоемкость, будем считать, что теплоемкость зависит от температуры (п.2).
Реакция конверсии водяным паром сильно эндотермична, поэтому необходимо подогревать исходную реакционную смесь. В промышленности для подогрева системы используют природный газ, за счет сжигания которого выделяется необходимое количество тепла Q.
6.2. Найдем тепло веществ на выходе из реактора:
где T2 – температура на выходе из реактора.
6.3. Найдем теплоту, поглощенную в ходе химической реакции:
6.4. Найдем количество теплоты, которое необходимо затратить на подогрев исходной смеси:
6.5. Найдем количество природного газа, которое необходимо затратить для подогрева исходной смеси, считая, что природный газ на 95% состоит из метана (состав природного газа зависит от месторождения, колеблется от 55-99%):
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. А. Г. Аншиц, Е. Н. Воскресенская. Окислительная конденсация метана – новый процесс переработки природного газа.
2. Сосна М.Х., Энтин Б.М., Лейтес И.Л. Нонограммы для определения состава газа конверсии метана//Химическая промышленность. – 1989. — №7. — с.59
3. Крейндель Э.М. Конверсия метана природного газа. Л.:-1964.
4. Г.С. Яблонский. Кинетические модели гетерогенно-каталитических реакций. Элементы теории кинетики сложных химических реакций. Глава 1. В сб.: Химическая и биологическая кинетика / Под ред. Н.М. Эмануэля, И.В. Березина, С.Д. Варфоломеева. М.: Изд-во Моск. ун-та, 1983.