Колебания груза на пружине описывают уравнением

Формулы пружинного маятника
Содержание
  1. Определение и формулы пружинного маятника
  2. Уравнения колебаний пружинного маятника
  3. Формулы периода и частоты колебаний пружинного маятника
  4. Формулы амплитуды и начальной фазы пружинного маятника
  5. Энергия колебаний пружинного маятника
  6. Примеры задач с решением
  7. Колебания груза на пружине — формулы, уравнения и задачи
  8. Общие сведения
  9. Пружинный маятник
  10. Зависимость периода
  11. Примеры решения задач
  12. Гармонические колебания в физике — формулы и определение с примерами
  13. Основные параметры гармонических колебаний
  14. Гармонические колебания пружинного маятника
  15. Гармонические колебания математического маятника
  16. Скорость и ускорение при гармонических колебаниях
  17. Превращения энергии при гармонических колебаниях
  18. Теоретический материал
  19. Превращения энергии при гармонических колебаниях
  20. Энергия при гармонических колебаниях
  21. 📸 Видео

Видео:9 класс, 34 урок, Колебания математического маятника и груза на пружинеСкачать

9 класс, 34 урок, Колебания математического маятника и груза на пружине

Определение и формулы пружинного маятника

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать вертикальные движения груза (рис.1), то он движется под действием силы тяжести и силы упругости, если систему вывели из состояния равновесия и предоставили самой себе.

Колебания груза на пружине описывают уравнением

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Уравнения колебаний пружинного маятника

Пружинный маятник, совершающий свободные колебания является примером гармонического осциллятора. Допустим, что маятник совершает колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза имеет вид:

где $^2_0=frac$ — циклическая частота колебаний пружинного маятника. Решением уравнения (1) является функция:

где $_0=sqrt<frac>>0$- циклическая частота колебаний маятника, $A$ — амплитуда колебаний; $_0t+varphi )$ — фаза колебаний; $varphi $ и $_1$ — начальные фазы колебаний.

В экспоненциальном виде колебания пружинного маятника можно записать как:

[Re tilde=Releft(Acdot exp left(ileft(_0t+varphi right)right)right)left(3right).]

Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Формулы периода и частоты колебаний пружинного маятника

Если в упругих колебаниях выполняется закон Гука, то период колебаний пружинного маятника вычисляют при помощи формулы:

Так как частота колебаний ($nu $) — величина обратная к периоду, то:

Видео:Гармонический осциллятор. Груз на пружине. 3 метода решения.Скачать

Гармонический осциллятор. Груз на пружине. 3 метода решения.

Формулы амплитуды и начальной фазы пружинного маятника

Зная уравнение колебаний пружинного маятника (1 или 2) и начальные условия можно полностью описать гармонические колебания пружинного маятника. Начальные условия определяют амплитуда ($A$) и начальная фаза колебаний ($varphi $).

Амплитуду можно найти как:

начальная фаза при этом:

где $v_0$ — скорость груза при $t=0 c$, когда координата груза равна $x_0$.

Видео:Грузы на пружинах.Скачать

Грузы на пружинах.

Энергия колебаний пружинного маятника

При одномерном движении пружинного маятника между двумя точками его движения существует только один путь, следовательно, выполняется условие потенциальности силы (любую силу можно считать потенциальной, если она зависит только от координат). Так как силы, действующие на пружинный маятник потенциальны, то можно говорить о потенциальной энергии.

Пусть пружинный маятник совершает колебания в горизонтальной плоскости (рис.2). За ноль потенциальной энергии маятника примем положение его равновесия, где поместим начало координат. Силы трения не учитываем. Используя формулу, связывающую потенциальную силу и потенциальную энергию для одномерного случая:

учитывая, что для пружинного маятника $F=-kx$,

Колебания груза на пружине описывают уравнением

тогда потенциальная энергия ($E_p$) пружинного маятника равна:

Закон сохранения энергии для пружинного маятника запишем как:

где $dot=v$ — скорость движения груза; $E_k=frac<m<dot>^2>$ — кинетическая энергия маятника.

Из формулы (10) можно сделать следующие выводы:

  • Максимальная кинетическая энергия маятника равна его максимальной потенциальной энергии.
  • Средняя кинетическая энергия по времени осциллятора равна его средней по времени потенциальной энергии.

Видео:Математические и пружинные маятники. 11 класс.Скачать

Математические и пружинные маятники. 11 класс.

Примеры задач с решением

Задание. Маленький шарик, массой $m=0,36$ кг прикреплен к горизонтальной пружине, коэффициент упругости которой равен $k=1600 frac$. Каково было начальное смещение шарика от положения равновесия ($x_0$), если он при колебаниях проходит его со скоростью $v=1 frac$?

Решение. Сделаем рисунок.

Колебания груза на пружине описывают уравнением

По закону сохранения механической энергии (так как считаем, что сил трения нет), запишем:

где $E_$ — потенциальная энергия шарика при его максимальном смещении от положения равновесия; $E_$ — кинетическая энергия шарика, в момент прохождения положения равновесия.

Потенциальная энергия равна:

В соответствии с (1.1) приравняем правые части (1.2) и (1.3), имеем:

Из (1.4) выразим искомую величину:

Вычислим начальное (максимальное) смещение груза от положения равновесия:

Ответ. $x_0=1,5$ мм

Задание. Пружинный маятник совершает колебания по закону: $x=A $где $A$ и $omega $ — постоянные величины. Когда возвращающая сила в первый раз достигает величины $F_0,$ потенциальная энергия груза равна $E_$. В какой момент времени это произойдет?

Решение. Возвращающей силой для пружинного маятника является сила упругости, равная:

Потенциальную энергию колебаний груза найдем как:

В момент времени, который следует найти $F=F_0$; $E_p=E_$, значит:

Видео:Период колебаний пружинного маятникаСкачать

Период колебаний пружинного маятника

Колебания груза на пружине — формулы, уравнения и задачи

Теория периодичности относится к общей физике. Повторяемость некоторых процессов в течение времени определяют с помощью различных величин, например, угла, напряжённости, температуры. Для изучения явления удобно использовать маятник. Одним из его видов является пружина с грузом. Колебания в такой системе зависят от периода, частоты и амплитуды. Узнать эти параметры можно, зная начальные условия и уравнения, описывающие механическую работу.

Колебания груза на пружине описывают уравнением

Видео:5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

Общие сведения

Колебания — это изменения какой-либо величины в точности или приблизительно повторяющиеся во времени. Если рассматривать процесс, с точки зрения механики, то он описывается положением тела. Повторение в точности является периодическим. Математически это можно записать формулой: x (t + T) = x (t), где T — время, в течение которого совершается одно полное колебание (период). Число циклов принято обозначать буквой N. Его находят как отношение времени к периоду: N = t / T.

Колебания груза на пружине описывают уравнением

При исследовании процесса не всегда бывает удобно оперировать временем, поэтому часто используют число колебаний за единицу времени. Эта величина называется частотой. Находят её количество по формуле: f = 1 / T. Доказать справедливость приведённого равенства просто. Число колебаний зависит от времени и частоты: N = f * t. Отсюда: f = N / t = (t / T) / t = 1 / T.

Очень важно не только понимать суть характеристик колебания, но и знать единицы его измерения. Вот основные из них:

  • период — секунды (с);
  • частота — герцы (Гц);
  • число колебаний — безразмерная величина.

Если в течение времени меняется и координата, то периодически будет изменяться и скорость. Значит: vx (t + T) = Vx (t).

Исходя из верности равенства, можно сказать, что условие периодичности будет справедливо и для проекции, то есть изменения ускорения. Отсюда следует, что сила действующая на тело тоже будет переменной: Fx (t + T) = Fx (t).

При процессе также происходит изменение потенциальной и кинетической энергий. Действительно, так как в процессе колебания скорость не является постоянной величиной, то соответственно будет меняться кинетическая работа. Потенциальная же энергия зависит от координат. Например, если рассмотреть период колебаний пружинного маятника, то за это время тело переместится из нижнего положения в верхнее и вернётся обратно. Значит, координата физического объекта изменится от нуля до какого-то граничного значения.

Следует отметить, что периодичные движения обязательно будут происходить в той системе, в которой есть положение равновесия. Причём оно должно быть устойчивым. То есть существует равнодействующая сила, стремящаяся привести объект в положение, соответствующее покою. Поэтому для поддержания отклонений нужна дополнительная сила. Колебательную систему (осциллятор) под действием вынужденной периодической силы называют вынужденной.

Видео:Физика Груз, колеблющийся на пружине, за 8 с совершил 32 колебания. Найдите период и частотуСкачать

Физика Груз, колеблющийся на пружине, за 8 с совершил 32 колебания. Найдите период и частоту

Пружинный маятник

Это устройство является простейшим примером свободных колебаний. В его состав входит кронштейн, пружина и груз. В качестве последнего может выступать любое физическое тело. Масса пружины по сравнению с грузом считается малой и при исследованиях не учитывается.

При изучении такой системы важной задачей является измерение периода движения тела, подвешенного к пружине. Определение понятию пружинного маятника, которое даётся в учебниках по физике довольно обобщённое. Считается, что это конструкция, в которой тело, имеющее массу m, подвешено на упругой пружине обладающей жёсткостью K. При этом из состояния равновесия систему может вывести упругая сила F = — k * x, где: x- расстояние от середины пружинного элемента до поверхности прикреплённого к нему груза.

Колебания груза на пружине описывают уравнением

Можно выделить два достаточных условия возникновения свободных колебаний:

Суть изучения гармонических колебаний состоит в определении их частоты движения или периода. В пружинном маятнике, впрочем, как и в любой колебательной системе, параметры зависят от ряда характеристик. Из основных величин, описывающих процесс, можно выделить: массу груза и жёсткость. Поэтому задача и состоит в выяснении, как период зависит от этих двух параметров.

Во время экспериментов регулировать массу довольно легко. Для этого можно взять эталонные гири и, соединяя их, увеличивать вес. Жёсткость же пружины можно изменить, добавляя параллельно или последовательно к ней другое сжимающееся тело. Чтобы выяснить, как будет изменяться характеристика растягивающегося элемента, нужно знать, что же представляет собой параметр. Так, под жёсткостью тела понимают отношение силы упругости к удлинению: k0 = F / Δ L. Измеряется величина в ньютонах, делённых на метр (Н/м).

Исходя из правила, если соединить две пружины параллельно и деформировать их, то можно утверждать, что первый и второй элемент растянется на одинаковую длину ΔL. Значит, возникнет две одинаково направленных силы упругости. Отсюда равнодействующая будет равняться: K = 2F/ ΔL = 2k0. Для последовательного же соединения длина всей системы увеличится на 2 ΔL. Сила упругости будет равна F. Соответственно, жёсткость будет изменяться по формуле: K = F / 2ΔL = k0 / 2.

Зависимость периода

При проведении эксперимента можно исследовать пять различных комбинаций поведения груза на пружине — два варианта связаны с весом и три с жёсткостью. Чтобы выполнить опыт самостоятельно нужно будет взять вертикальный кронштейн, две одинаковые пружины и два равных по весу груза. Так как в реальности период будет довольно маленький, то для его измерения можно взять время, например, пятидесяти колебаний, а потом полученный результат разделить на это число. Подсчёт времени удобно выполнять с помощью секундомера.

Колебания груза на пружине описывают уравнением

Вычисленные результаты нужно занести в таблицу. Примерный порядок чисел должен получиться таким:

k mm02m0
k0 / 20,680,93
k00,460,64
2k00.340,47

Эти данные можно проанализировать. Выводы будут следующими:

  • с ростом массы физического тела период цикличности увеличивается;
  • по мере увеличения жёсткости период колебаний уменьшается.

Приведённые утверждения, возможно, описать и количественно. Исходя из результатов, величины, стоящие в ячейке m0k0 и 2m02ko почти совпадают. С точки зрения физики, так и должно быть. Если взять грузик на пружине и измерить характеристику, а потом добавить к нему точно такую же систему, то период не поменяется. Это и можно наблюдать во время опыта. Значит, период движения зависит от того каким будет отношение массы к жёсткости.

Колебания груза на пружине описывают уравнением

По аналогии можно рассмотреть, как влияет жёсткость. Из эксперимента, видно, что если её увеличить дважды на одну и ту же величину, то она возрастёт в четыре раза, а значение обратное частоте уменьшится на это же число. Отсюда можно предположить, что период будет обратно пропорционален корню квадратному из жёсткости.

Объединив эти две гипотезы можно сделать заключение. Что период амплитуды колебаний груза на пружине будет прямо пропорционален корню квадратного из отношения массы к жёсткости: T = √(m / k). Проверить это утверждение можно по теории размерности. Подставив в формулу единицы измерения, получим: √(m / k) = √(кг / (Н/м)) = √(кг * м / Н). Учитывая, что ньютон — это отношение метра к секунде в квадрате или килограмму, умноженному на метр и делённому на секунду, размерное равенство примет вид: √(кг * м/Н) = √(c 2 * м/м) = √с 2 = с.

Для написания полной формулы в равенство нужно вести ещё коэффициент. Он будет равняться 2p. Значит, период колебаний пружинного маятника количественно описывается выражением: T = 2p * √ (m / k).

Примеры решения задач

Практические задания помогают лучше разобраться в теоретическом материале и запомнить нужные для решения формулы. Существуют различные примеры, с помощью которых можно довольно быстро проработать весь изученный курс. Вот два задания с подробным описанием решения на вычисления параметров пружинных колебаний тела. Разобравшись в них, можно переходить к самостоятельному вычислению более сложных примеров.

Колебания груза на пружине описывают уравнением

Задание № 1. Груз, подвешенный к пружине, перемещается циклически по вертикальной оси. За восемь секунд он совершил тридцать два колебания. Определить частоту. Итак, по условию задания дано время t = 8 c и число полного перемещения тела N = 32. Чтобы решить эту задачу нужно воспользоваться формулой нахождения периода: T = t / N. Все величины для этого есть: T = 8 c / 32 = 1 / 4 = 0,25 секунды. Частота связана с периодом выражением: f = 1 / T. После подстановки чисел получится ответ равный четырём герцам.

Колебания груза на пружине описывают уравнением

Задание № 2. Грузик совершает колебания на пружине с жёсткостью сто ньютон на метр. При этом максимальная скорость движения составляет два метра в секунду. Вычислить массу тела учитывая, что максимальная амплитуда отклонения от точки покоя составляет десять сантиметров. Силой трения пренебречь.

При решении примера нужно рассуждать следующим образом. Когда будет максимальное растяжение пружины, то скорость груза равна нулю: V1 = 0. Значит, кинетическая энергия тоже будет нулевой: Ek1 = 0.

В этот момент останется только потенциальная энергия вытянутой пружины Ep1. В положении равновесия скорость тела максимальная и равняется V = 2 м/с. Так как пружина в этот момент нерастянута и несжатая, то Ep = 0.

По закону сохранения энергии: Ek1 + Ep1 = Ek + Ep. Кинетическая работа при растянутой пружине равняется нулю, так же как и потенциальная в состоянии покоя, значит, Ep1 = (k * L 2 ) / 2, где L — удлинение, а k — жёсткость. Энергию же можно найти так: Ek = mV 2 / 2. Так как тело совершает колебания около положения равновесия, то вытянутость пружины будет равняться амплитуде.

Перед тем как непосредственно переходить к составлению итоговой формулы и вычислениям необходимо все значения измерений привести в соответствии с СИ. Так, амплитуда указана в сантиметрах, поэтому её нужно перевести в метры. Теперь можно переходить к составлению отношения и подстановки данных: (k * L 2 ) / 2 = mV 2 / 2. Отсюда: m = (k * L) / V 2 = (100 Н/м * 0,1 2 м) / 2 2 м/с = 1 / 4 = 0,25 килограмма.

Видео:Урок 93 (осн). Исследование пружинного маятникаСкачать

Урок 93 (осн). Исследование пружинного маятника

Гармонические колебания в физике — формулы и определение с примерами

Содержание:

Гармонические колебания:

Некоторые движения, встречающиеся в быту, за равные промежутки времени повторяются. Такое движение называется периодическим движением. Часто встречается движение, при котором тело перемещается то в одну, то в другую сторону относительно равновесного состояния. Такое движение тела называется колебательным движением или просто колебанием.

Колебания, совершаемые телом, которое выведено из равновесного состояния в результате действия внутренних сил, называются собственными (свободными) колебаниями. Величина удаления от равновесного состояния колеблющегося тела называется его смещением (Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Для наблюдения механических колебаний ознакомимся с колебаниями груза, закрепленного на конце пружины (рис. 5.1). На этом рисунке груз, закрепленный на пружине, сможет двигаться без трения с горизонтальным стержнем, так как силу тяжести шарика приводит в равновесие реакционная сила стержня.
Коэффициент упругости пружины – Колебания груза на пружине описывают уравнением, а ее масса ничтожна мала и можно ее не учитывать. Считаем, что масса системы сосредоточена в грузе, а упругость в пружине.

Если груз, который находится в равновесии, потянем вправо на расстояние Колебания груза на пружине описывают уравнениеми отпустим, то под действием силы упругость, которая появляется в пружине, груз смещается в
сторону равновесного состояния.

Колебания груза на пружине описывают уравнением

С течением времени смещение груза уменьшается относительно Колебания груза на пружине описывают уравнением, но скорость груза при этом увеличивается. Когда груз доходит до равновесного состояния, его смещение (Колебания груза на пружине описывают уравнением) равняется нулю и соответственно сила упругости равняется нулю. Но груз по инерции начинает двигаться в левую сторону. Модуль силы упругости, которая появляется в пружине, тоже растет. Однако из-за того, что сила упругости постоянно направлена против смещения груза, она начинает тормозить груз. В результате движение груза замедляется, и, в результате, прекращается. Теперь груз под воздействием эластической силы сжатой пружины начинает двигаться в сторону равновесного состояния.
Для определения закономерности изменения в течение времени системы, которая периодически совершает колебания, заполним воронку песком, подвесим на веревке, подложим бумагу под систему и раскачаем воронку. В ходе колебания начинаем равномерно вытягивать бумагу из-под системы. В результате мы увидим, что следы песка на бумаге образуют синусоиду. Из этого можно сделать следующий вывод: смещение периодически колеблющегося тела по истечении времени изменяется по закону синусов и косинусов. При этом самое большое значение смещения равняется амплитуде (Колебания груза на пружине описывают уравнением):

Колебания груза на пружине описывают уравнением

здесь: Колебания груза на пружине описывают уравнением– циклическая частота, зависящая от параметров колеблющихся систем, Колебания груза на пружине описывают уравнением– начальная фаза, (Колебания груза на пружине описывают уравнением) фаза колебания с течением времени Колебания груза на пружине описывают уравнением.
Из математики известно, что Колебания груза на пружине описывают уравнениемпоэтому формулу (5.2.) можно записать в виде

Колебания груза на пружине описывают уравнением

Колебания, в которых с течением времени параметры меняются по закону синуса или косинуса, называются гармоническими колебаниями.

Значит, пружинный маятник, вышедший из равновесного состояния, совершает гармоническое колебание. Для того чтобы система совершала гармоническое колебание: 1) при выходе тела из равновесного состояния, для возвращения его в равновесное состояние должна появиться внутренняя сила; 2) колеблющееся тело должно обладать инертностью и на него не должны оказывать воздействие силы трения и сопротивления. Эти условия называется условиями проявления колебательных движений.

Видео:Физика 9 класс (Урок№9 - Механические колебания.)Скачать

Физика 9 класс (Урок№9 - Механические колебания.)

Основные параметры гармонических колебаний

a) период колебания Колебания груза на пружине описывают уравнением– время одного полного колебания:

Колебания груза на пружине описывают уравнением)

б) частота колебания Колебания груза на пружине описывают уравнением– количество колебаний, совершаемых за 1 секунду:

Колебания груза на пружине описывают уравнением

Единица Колебания груза на пружине описывают уравнением
c) циклическая частота Колебания груза на пружине описывают уравнением– количество колебаний за Колебания груза на пружине описывают уравнениемсекунд:

Колебания груза на пружине описывают уравнением

С учетом формул (5.5) и (5.6) уравнение гармонических колебаний (5.2) можно записать в следующей форме.

Колебания груза на пружине описывают уравнением

Большинство величин, количественно описывающих гармонические колебания, смещения которых с течением времени меняются по закону синусов или косинусов (скорость, ускорение, кинетическая и потенциальная энергия), тоже гармонически меняются.
Это подтверждается следующими графиками и уравнениями:

Колебания груза на пружине описывают уравнением

Пример решения задачи:

Точка совершает гармоническое колебательное движение. Максимальное смещение и скорость соответственно равны 0,05 м и 0,12 м/с. Найдите максимальное ускорение и скорость колебательного движения, а также ускорение точки в момент, когда смещение равно 0,03 м.

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Формула и решение:

Колебания груза на пружине описывают уравнением

Видео:Физика 9 класс. Уравнение механического движения пружинного маятникаСкачать

Физика  9 класс. Уравнение механического движения пружинного маятника

Гармонические колебания пружинного маятника

В 1985 году в городе Мехико произошла ужасная катастрофа, причина которой было землетрясение: 5526 человек погибли, 40 ООО человек ранены, 31000 человек остались без крова. Из проведенных затем исследований ученые выяснили, что главной причиной разрушений во время землетрясения является совпадение частоты свободных колебаний зданий с частотой вынужденных колебаний Земли. Поэтому при возведении новых зданий в сейсмически активной зоне необходимо, чтобы эти частоты не совпадали. Это даст возможность уменьшить последствия землетрясения. С этой целью важно знать, от чего зависят частота и период колебаний.

Одной из простейших колебательных систем, совершающих гармонические колебания, является пружинный маятник.

Пружинный маятник — это колебательная система, состоящая из пружины и закрепленного на ней тела. Колебания, возникающие в пружинном маятнике, являются гармоническими колебаниями:

Под гармоническими колебаниями подразумеваются колебания, возникающие под действием силы, прямо пропорциональной перемещению и направленной против направления перемещения.

Исследование колебаний пружинного маятника имеет большое практическое значение, например, при вычислении колебаний рессор автомобиля при езде; в исследовании воздействия колебаний на фундамент зданий и тяжелых станков, в определении эластичности ушных перепонок при диагностике лор-заболеваний. По этой причине изучение колебаний пружинного маятника является актуальной проблемой.

С целью уменьшения количества сил, действующих на колебательную систему, целесообразно использовать горизонтально расположенную колебательную систему пружина-шарик (d).

Колебания груза на пружине описывают уравнением

В этой системе действия силы тяжести и реакции опоры уравновешивают друг друга. При выведении шарика из состоянии равновесия, например, при растяжении пружины до положения Колебания груза на пружине описывают уравнениемсила упругости, возникающая в ней, сообщает шарику ускорение и приводит его в колебательное движение. По II закону Ньютона уравнение движения маятника можно записать так:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Формула (4.9) является уравнением свободных гармонических колебаний пружинного маятника.

Где Колебания груза на пружине описывают уравнением— масса шарика, закрепленного на пружине, Колебания груза на пружине описывают уравнением— проекция ускорения шарика вдоль оси Колебания груза на пружине описывают уравнением— жесткость пружины, Колебания груза на пружине описывают уравнением-удлинение пружины, равное амплитуде колебания. Для данной колебательной системы отношение Колебания груза на пружине описывают уравнением— постоянная положительная величина (так как масса и жесткость не могут быть отрицательными). При сравнении уравнения колебаний (4.9) пружинного маятника с выражением для другого вида периодического движения — известным выражением центростремительного ускорения при равномерном движении по окружности получается, что отношение Колебания груза на пружине описывают уравнениемсоответствует квадрату циклической частоты Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Таким образом, уравнение движения пружинного маятника можно записать и так:

Колебания груза на пружине описывают уравнением

Уравнение (4.12) показывает, что колебания пружинного маятника с циклической частотой Колебания груза на пружине описывают уравнениемявляются свободными гармоническими колебаниями. Из математики известно, что решением этого уравнения является:

Колебания груза на пружине описывают уравнением

Так как тригонометрическая функция является гармонической функцией, то и колебания пружинного маятника являются гармоническими колебаниями.

Здесь Колебания груза на пружине описывают уравнениемфаза колебания, Колебания груза на пружине описывают уравнением— начальная фаза. Единица измерения фазы в СИ — радиан (1 рад). Фазу также можно измерять в градусах: Колебания груза на пружине описывают уравнениемЗначение начальной фазы зависит от выбора начального момента времени. Начальный момент времени можно выбрить так, чтобы Колебания груза на пружине описывают уравнениемВ этом случае формулу гармонических колебаний пружинного маятника можно записать так:

Колебания груза на пружине описывают уравнениемили Колебания груза на пружине описывают уравнением

Из сравнения выражений (4.11) и (4.5) определяются величины, от которых зависят период и частота колебаний пружинного маятника:

Колебания груза на пружине описывают уравнением

Из выражений (4.14) и (4.15) видно, что период и частота пружинного маятника зависят от жесткости пружины и массы груза, подвешенного к нему.

Видео:Урок 92 (осн). Колебательное движение. МаятникиСкачать

Урок 92 (осн). Колебательное движение. Маятники

Гармонические колебания математического маятника

До наших дней дошла такая историческая информация: однажды в 1583 году итальянский ученый Г. Галилей, находясь в храме города Пиза, обратил внимание на колебательное движение люстры, подвешенной на длинном тросе. Он, сравнивая колебания люстры со своим пульсом, определил, что, несмотря на уменьшение амплитуды колебания, время, затрачиваемое на одно полное колебание (период колебания) люстры, не изменяется. Затем Галилей в результате многочисленных проведенных исследований, изменяя длину нитевого маятника, массу подвешенного к нему груза, высоту расположения маятника (по сравнению с уровнем моря), определил, от чего зависят период и частота колебаний маятника.

Гармонические колебания возникают также под действием силы тяжести. Это можно наблюдать с помощью математического маятника.

Математический маятник — это идеализированная колебательная система, состоящая из материальной точки, подвешенной на невесомой и нерастяжимой нити.

Для исследования колебаний математического маятника можно использовать систему, состоящую из тонкой длинной нити и шарика (b).

Колебания груза на пружине описывают уравнением

Сила тяжести Колебания груза на пружине описывают уравнениемдействующая на шарик в положении равновесия маятника, уравновешивается силой натяжения нити Колебания груза на пружине описывают уравнениемОднако, если вывести маятник из состояния равновесия, сместив его на малый угол Колебания груза на пружине описывают уравнениемв сторону, то возникают две составляющие вектора силы тяжести -направленная вдоль нити Колебания груза на пружине описывают уравнениеми перпендикулярная нити Колебания груза на пружине описывают уравнениемСила натяжения Колебания груза на пружине описывают уравнениеми составляющая силы тяжести Колебания груза на пружине описывают уравнениемуравновешивают друг друга. Поэтому равнодействующая сила будет равна составляющей Колебания груза на пружине описывают уравнением«пытающейся» вернуть тело в положение равновесия (см.: рис. b). Учитывая вышеуказанное и ссылаясь на II закон Ньютона, можно написать уравнение колебательного движения тела массой Колебания груза на пружине описывают уравнениемв проекциях на ось ОХ:

Колебания груза на пружине описывают уравнением

Приняв во внимание, что:

Колебания груза на пружине описывают уравнением

Для уравнения движения математического маятника получим:

Колебания груза на пружине описывают уравнением

Где Колебания груза на пружине описывают уравнением— длина математического маятника (нити), Колебания груза на пружине описывают уравнением— ускорение свободного падения, Колебания груза на пружине описывают уравнением— амплитуда колебания.

Для данной колебательной системы отношение Колебания груза на пружине описывают уравнением— постоянная положительная величина, потому что ускорение свободного падения и длина нити не могут быть отрицательными. Если сравнить уравнения (4.16) и (4.10), с легкостью можно увидеть, что отношение Колебания груза на пружине описывают уравнениемтакже соответствует квадрату циклической частоты Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Таким образом, уравнение движения математического маятника можно записать и так:

Колебания груза на пружине описывают уравнением

Уравнение (4.19) показывает, что колебания математического маятника являются гармоническими колебаниями с циклической частотой со. Из математики вы знаете, что решением этого уравнения является нижеприведенная функция:

Колебания груза на пружине описывают уравнением

Так как эта функция является гармонической, то и колебания математического маятника являются гармоническими колебаниями.

Отсюда определяются величины, от которых зависят период и частота колебаний математического маятника:

Колебания груза на пружине описывают уравнением

Таким образом, период и частота колебаний математического маятника зависят от длины маятника и напряженности гравитационного поля в данной точке.

Скорость и ускорение при гармонических колебаниях

Вы уже знакомы с основными тригонометрическими функциями и умеете строить графики тригонометрических уравнений, описывающих гармонические колебания.

При гармонических колебаниях маятника его смещение изменяется по гармоническому закону, поэтому не трудно доказать, что его скорость и ускорение также изменяются по гармоническому закону. Предположим, что смещение изменяется по закону косинуса и начальная фаза равна нулю

Колебания груза на пружине описывают уравнением

Так как скорость является первой производной смещения (координат) по времени, то:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Как видно из выражения (4.23), скорость, изменяющаяся по гармоническому закону, опережает колебания смещения по фазе на Колебания груза на пружине описывают уравнением(а).

Колебания груза на пружине описывают уравнением

Максимальное (амплитудное) значение скорости зависит от амплитуды, частоты и периода колебаний:

Колебания груза на пружине описывают уравнением

Так как ускорение является первой производной скорости по времени, то получим:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Как видим, колебания ускорения, изменяющегося по гармоническому закону, опережают колебания скорости по фазе на Колебания груза на пружине описывают уравнениема колебания смещения на

Колебания груза на пружине описывают уравнением(см.: рис. а). Максимальное (амплитудное) значение ускорения зависит от амплитуды, частоты и периода колебаний:

Колебания груза на пружине описывают уравнением

Превращения энергии при гармонических колебаниях

Колебания груза на пружине описывают уравнением

Теоретический материал

Потенциальная и кинетическая энергия свободных гармонических колебаний в замкнутой системе периодически превращаются друг в друга.

В таблице 4.4 дано сравнение превращений энергий в пружинном и математическом маятниках. Как видно из таблицы, потенциальная энергия колебательной системы в точке возвращения Колебания груза на пружине описывают уравнениемимеет максимальное значение:

Колебания груза на пружине описывают уравнением

Если же маятник находится в точке равновесия, потенциальная энергия минимальна:

Колебания груза на пружине описывают уравнением

Кинетическая энергия системы, наоборот, в точке возвращения минимальна Колебания груза на пружине описывают уравнениема в точке равновесия максимальна:

Колебания груза на пружине описывают уравнением

На рисунке (а) даны графики зависимости потенциальной и кинетической энергии при гармоническом колебательном движении от смещения.

Колебания груза на пружине описывают уравнением

Полная механическая энергия замкнутой колебательной системы в произвольный момент времени Колебания груза на пружине описывают уравнениемостается постоянной (трение не учитывается):

a) для пружинного маятника:

Колебания груза на пружине описывают уравнением

b) для математического маятника:

Колебания груза на пружине описывают уравнением

Если принять во внимание изменение смещения и скорости по гармоническому закону в формулах потенциальной и кинетической энергии колебательного движения, то станет очевидно, что при гармонических колебаниях эти энергии так же изменяются по гармоническому закону (b):

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Как было отмечено выше, полная энергия системы не изменяется по гармоническому закону:

Колебания груза на пружине описывают уравнением

Полная энергия гармонических колебаний прямо пропорциональна квадрату амплитуды колебаний.

Если же в системе существует сила трения, то его полная энергия не сохраняется — изменение полной механической энергии равно работе силы трения. В результате колебания затухают: Колебания груза на пружине описывают уравнением

Превращения энергии при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергий. Кинетической энергией тело обладает вследствие своего движения, а потенциальная энергия определяется взаимодействием тела с другими телами или полями. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силу трения не учитывают, то его механическая энергия сохраняется.

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол а (рис. 7), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением
Рис. 7. Превращения энергии при колебаниях математического маятника

Поскольку при прохождении положения равновесия его потенциальная энергия равна нулю, то кинетическая энергия (а следовательно, и скорость) будет максимальна:

Колебания груза на пружине описывают уравнением

Из закона сохранения механической энергии следует (рис. 8), что

Колебания груза на пружине описывают уравнением(1)

Отсюда найдем модуль максимальной скорости маятника:

Колебания груза на пружине описывают уравнением(2)

Высоту Колебания груза на пружине описывают уравнениемможно выразить через длину маятника l и амплитуду колебаний А.

Колебания груза на пружине описывают уравнением

Если колебания малые, то Колебания груза на пружине описывают уравнениемИз треугольника KCD на рисунке 8 находим

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Подставив выражение для Колебания груза на пружине описывают уравнениемв формулу I (2), получим

Колебания груза на пружине описывают уравнением

Подставляя выражения для Колебания груза на пружине описывают уравнениеми Колебания груза на пружине описывают уравнениемв соотношение (1), находим

Колебания груза на пружине описывают уравнением

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную.

В любом промежуточном положении

Колебания груза на пружине описывают уравнением

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 9). В крайних точках, когда координата груза принимает значение Колебания груза на пружине описывают уравнением, модуль его скорости равен нулю (v = 0) и кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Таким образом, получаем, что механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда x = 0, вся энергия осциллятора переходит в кинетическую энергию груза:

Колебания груза на пружине описывают уравнением

где Колебания груза на пружине описывают уравнением— модуль максимальной скорости груза при колебаниях.

В промежуточных точках полная механическая энергия

Колебания груза на пружине описывают уравнением

Отсюда можно вывести выражение для модуля скорости Колебания груза на пружине описывают уравнениемгруза в точке с

Колебания груза на пружине описывают уравнением

Так как Колебания груза на пружине описывают уравнением

Энергия при гармонических колебаниях

Механическая энергия системы равна сумме ее кинетической и потенциальной энергии. Механическая энергия замкнутой системы, в которой не действуют силы трения (сопротивления), сохраняется.

Поскольку при колебаниях гармонического осциллятора силой трения пренебрегают, то его механическая энергия сохраняется. Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При отклонении маятника на угол Колебания груза на пружине описывают уравнением(рис. 10), соответствующий максимальному смещению от положения равновесия, потенциальная энергия максимальна, а кинетическая энергия равна нулю:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Поскольку при прохождении положения равновесия потенциальная энергия равна нулю Колебания груза на пружине описывают уравнениемто из закона сохранения механической энергии следует (см. рис. 10), что Колебания груза на пружине описывают уравнениемт. е. кинетическая энергия маятника (а следовательно, и скорость) рис. ю. Определение^иhmax будет максимальна:

Колебания груза на пружине описывают уравнением

Запишем закон сохранения механической энергии, подставив в него выражения для потенциальной и кинетической энергии:

Колебания груза на пружине описывают уравнением

Отсюда найдем модуль максимальной скорости маятника:

Колебания груза на пружине описывают уравнением

Высоту Колебания груза на пружине описывают уравнениемможно выразить через длину Колебания груза на пружине описывают уравнениеммаятника и амплитуду Колебания груза на пружине описывают уравнениемколебаний. Если колебания малые, то Колебания груза на пружине описывают уравнениемИз Колебания груза на пружине описывают уравнением(см. рис. 10) находим:
Колебания груза на пружине описывают уравнением

или Колебания груза на пружине описывают уравнением

Подставив выражение (3) для Колебания груза на пружине описывают уравнениемв формулу (2), получим:
Колебания груза на пружине описывают уравнением

Подставляя выражения (3) для Колебания груза на пружине описывают уравнениеми (4) для Колебания груза на пружине описывают уравнениемв соотношение (1), находим:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Таким образом, в положении равновесия потенциальная энергия полностью переходит в кинетическую, а в положениях максимального отклонения кинетическая энергия полностью переходит в потенциальную (рис. 11). В любом промежуточном положении
Колебания груза на пружине описывают уравнением

Покажем, что аналогичные превращения энергии имеют место и для пружинного маятника (рис. 12).

Колебания груза на пружине описывают уравнением

В крайних положениях, когда Колебания груза на пружине описывают уравнениеммодуль скорости маятника Колебания груза на пружине описывают уравнениеми кинетическая энергия груза полностью переходит в потенциальную энергию деформированной пружины:

Колебания груза на пружине описывают уравнением

Таким образом, из соотношения (6) следует, что механическая энергия пружинного маятника пропорциональна квадрату амплитуды колебаний.

В положении равновесия, когда Колебания груза на пружине описывают уравнениемвся энергия пружинного маятника переходит в кинетическую энергию груза:

Колебания груза на пружине описывают уравнением

где Колебания груза на пружине описывают уравнением— модуль максимальной скорости груза при колебаниях.

В положениях между крайними точками полная энергия

Колебания груза на пружине описывают уравнением

С учетом выражений для координаты Колебания груза на пружине описывают уравнениеми проекции скорости груза Колебания груза на пружине описывают уравнениема также для Колебания груза на пружине описывают уравнениемнаходим его потенциальную энергию Колебания груза на пружине описывают уравнениеми кинетическую энергию Колебания груза на пружине описывают уравнениемв произвольный момент времени

Тогда полная механическая энергия пружинного маятника в этот же. момент времени есть величина постоянная и равная:

Колебания груза на пружине описывают уравнением

Таким образом, начальное смещение Колебания груза на пружине описывают уравнениемопределяет начальную потенциальную, а начальная скорость Колебания груза на пружине описывают уравнениемопределяет начальную кинетическую энергию колеблющегося тела. При отсутствии в системе потерь энергии процесс колебаний сопровождается только переходом энергии из потенциальной в кинетическую и обратно.

Заметим, что частота периодических изменений кинетической (потенциальной) энергии колеблющегося тела в два раза больше частоты колебаний маятника. Действительно, дважды за период механическая энергия тела будет полностью превращаться в потенциальную (в двух крайних положениях маятника) и дважды за период — в кинетическую (при его прохождении через положение равновесия) (рис. 13).

Колебания груза на пружине описывают уравнением

Пример №1

Математический маятник при колебаниях от одного крайнего положения до другого смещается на расстояние Колебания груза на пружине описывают уравнениемсм и при прохождении положения равновесия достигает скорости, модуль которой Колебания груза на пружине описывают уравнениемОпределите период Колебания груза на пружине описывают уравнениемколебании маятника.
Дано:

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением
Решение

По закону сохранения механической энергии

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением
Ответ: Колебания груза на пружине описывают уравнением

Пример №2

Груз массой Колебания груза на пружине описывают уравнениемг находится на гладкой горизонтальной поверхности и закреплен на легкой пружине жесткостью Колебания груза на пружине описывают уравнениемЕго смешают на расстояние Колебания груза на пружине описывают уравнениемсм от положения равновесия и сообщают в направлении от положения равновесия скорость, модуль которой Колебания груза на пружине описывают уравнениемОпределите потенциальную Колебания груза на пружине описывают уравнениеми кинетическую Колебания груза на пружине описывают уравнениемэнергию груза в начальный момент времени. Запишите кинематический закон движения груза.

Колебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением
Решение Потенциальная энергия груза:
Колебания груза на пружине описывают уравнением
Кинетическая энергия груза:
Колебания груза на пружине описывают уравнением

Начальное смещение груза не является амплитудой, так как вместе с начальным отклонением грузу сообщили и скорость. Однако полная энергия может быть выражена через амплитуду колебаний:

Колебания груза на пружине описывают уравнением

Отсюда
Колебания груза на пружине описывают уравнением
Циклическая частота:
Колебания груза на пружине описывают уравнением
В начальный момент времени Колебания груза на пружине описывают уравнениемкоордината груза Колебания груза на пружине описывают уравнениемОтсюда начальная фаза:
Колебания груза на пружине описывают уравнением
Тогда закон гармонических колебаний имеет вид (рис. 14):

Колебания груза на пружине описывают уравнением

Ответ: Колебания груза на пружине описывают уравнениемКолебания груза на пружине описывают уравнением

Колебания груза на пружине описывают уравнением

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Вынужденные колебания в физике
  • Электромагнитные колебания
  • Свободные и вынужденные колебания в физике
  • Вынужденные электромагнитные колебания
  • Закон Архимеда
  • Движение жидкостей
  • Уравнение Бернулли
  • Механические колебания и волны в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📸 Видео

Колебания математического и пружинного маятников. 9 класс.Скачать

Колебания математического и пружинного маятников. 9 класс.

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

Колебания математического и пружинного маятников. Практическая часть - решение задачи. 9 класс.Скачать

Колебания математического и пружинного маятников. Практическая часть - решение задачи. 9 класс.

Колебания груза на пружине: 2 задачиСкачать

Колебания груза на пружине: 2 задачи

Физика. Проверка независимости периода колебаний груза, подвешенного к ленте, от массы грузаСкачать

Физика. Проверка независимости периода колебаний груза, подвешенного к ленте, от массы груза

Гармонические колебанияСкачать

Гармонические колебания

Урок 329. Задачи на гармонические колебания - 1Скачать

Урок 329. Задачи на гармонические колебания - 1
Поделиться или сохранить к себе: