Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.
Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .
Видео:Однородные уравнения. Можно ли делить на косинус?Скачать
Как решать тригонометрические уравнения:
Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:
где (t) – выражение с иксом, (a) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:
Решим уравнение с помощью числовой окружности. Для этого: 1) Построим оси. 2) Построим окружность. 3) На оси синусов (оси (y)) отметим точку (-) (frac) . 4) Проведем перпендикуляр к оси синусов через эту точку. 5) Отметим точки пересечения перпендикуляра и окружности. 6)Подпишем значения этих точек: (-) (frac) ,(-) (frac) . 7) Запишем все значения соответствующие этим точкам с помощью формулы (x=t+2πk), (k∈Z): (x=-) (frac) (+2πk), (k∈Z); (x=-) (frac) (+2πn), (n∈Z)
Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .
Внимание! Уравнения (sinx=a) и (cosx=a) не имеют решений, если (a ϵ (-∞;-1)∪(1;∞)). Потому что синус и косинус при любых икс больше или равны (-1) и меньше или равны (1):
Пример. Решить уравнение (cosx=-1,1). Решение: (-1,1 (frac) , (frac) 7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в (π), то все значения можно записать одной формулой:
Опять воспользуемся числовой окружностью. 1) Построим окружность, оси (x) и (y). 2) На оси косинусов (ось (x)) отметим (0). 3) Проведем перпендикуляр к оси косинусов через эту точку. 4) Отметим точки пересечения перпендикуляра и окружности. 5) Подпишем значения этих точек: (-) (frac),(frac) . 6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).
7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.
8) Как обычно в уравнениях будем выражать (x). Не забывайте относиться к числам с (π), так же к (1), (2), (frac) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!
Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений: — Метод введения новой переменной (самый популярный в ЕГЭ). — Метод разложения на множители . — Метод вспомогательных аргументов.
Рассмотрим пример решения квадратно-тригонометрического уравнения
Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .
(D=25-4 cdot 2 cdot 2=25-16=9)
Делаем обратную замену.
Первое уравнение решаем с помощью числовой окружности. Второе уравнение не имеет решений т.к. (cosx∈[-1;1]) и двум быть равен не может ни при каких иксах.
Запишем все числа, лежащие на числовой окружности в этих точках.
Ответ: (x=±) (frac) (+2πk), (k∈Z).
Пример решения тригонометрического уравнения с исследованием ОДЗ:
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
Видео:Решаем тригонометрические уравнения через деление на косинус и замену переменных Алгебра 10Скачать
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Видео:Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать
Основные виды тригонометрических уравнений (задание 13)
Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.
(blacktriangleright) Квадратные тригонометрические уравнения Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) , то такое уравнение с помощью замены (f(x)=t) сводится к квадратному уравнению.
С помощью формулы (cos^2alpha=1-sin^2alpha) уравнение сводится к виду: (6sin^2x+13sin x+7=0) . Сделаем замену (t=sin x) . Т.к. область значений синуса (sin xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:
(6t^2+13t+7=0) . Корни данного уравнения (t_1=-dfrac76, t_2=-1) .
Таким образом, корень (t_1) не подходит. Сделаем обратную замену: (sin x=-1 Rightarrow x=-dfrac2+2pi n, ninmathbb) .
Пример 2. Решить уравнение (5sin 2x=cos 4x-3)
С помощью формулы двойного угла для косинуса (cos 2alpha=1-2sin^2alpha) имеем: (cos4x=1-2sin^22x) . Сделаем эту подстановку и получим:
(2sin^22x+5sin 2x+2=0) . Сделаем замену (t=sin 2x) . Т.к. область значений синуса (sin 2xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:
(2t^2+5t+2=0) . Корни данного уравнения (t_1=-2, t_2=-dfrac12) .
Таким образом, корень (t_1) не подходит. Сделаем обратную замену: (sin 2x=-dfrac12 Rightarrow x_1=-dfrac+pi n, x_2=-dfrac+pi n, ninmathbb) .
Пример 3. Решить уравнение (mathrm, x+3mathrm,x+4=0)
Т.к. (mathrm,xcdot mathrm,x=1) , то (mathrm,x=dfrac1<mathrm,x>) . Сделаем замену (mathrm,x=t) . Т.к. область значений тангенса (mathrm,xinmathbb) , то (tinmathbb) . Получим уравнение:
(t+dfrac3t+4=0 Rightarrow dfrac=0) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:
Сделаем обратную замену:
(blacktriangleright) Кубические тригонометрические уравнения Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) , то такое уравнение с помощью замены (f(x)=t) сводится к кубическому уравнению.
Часто при решении таких уравнений в дополнение к предыдущим формулам используются формулы тройного угла: [begin hline &&&\ sin =3sin alpha -4sin^3alpha &&& cos=4cos^3alpha -3cos alpha\&&&\ hline end]
Пример 4. Решить уравнение (11cos 2x-3=3sin 3x-11sin x)
При помощи формул (sin 3x=3sin x-4sin^3x) и (cos2x=1-2sin^2x) можно свести уравнение к уравнению только с (sin x) :
Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin^2 x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .
Аналогично и (sin x=0) не является решением такого уравнения.
Значит, данное уравнение можно делить на (cos^2 x) или на (sin^2 x) . Разделим, например, на (cos^2 x) :
Таким образом, данное уравнение при помощи деления на (cos^2x) и замены (t=mathrm,x) сводится к квадратному уравнению:
(at^2+bt+c=0) , способ решения которого вам известен.
Уравнения вида [I’. quad <Large>, quad ane0,cne 0] с легкостью сводятся к уравнению вида (I) с помощью использования основного тригонометрического тождества: [d=dcdot 1=dcdot (sin^2x+cos^2x)]
Заметим, что благодаря формуле (sin2x=2sin xcos x) однородное уравнение можно записать в виде
(asin^2 x+bsin 2x+ccos^2x=0)
Пример 5. Решить уравнение (2sin^2x+3sin xcos x=3cos^2x+1)
Подставим вместо (1=sin^2x+cos^2x) и получим:
(sin^2x+3sin xcos x-4cos^2x=0) . Разделим данное уравнение на (cos^2x) :
(mathrm^2,x+3mathrm,x-4=0) и сделаем замену (t=mathrm,x, tinmathbb) . Уравнение примет вид:
(t^2+3t-4=0) . Корнями являются (t_1=-4, t_2=1) . Сделаем обратную замену:
Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .
Аналогично и (sin x=0) не является решением такого уравнения.
Значит, данное уравнение можно делить на (cos x) или на (sin x) . Разделим, например, на (cos x) :
(a dfrac+b dfrac=0) , откуда имеем (amathrm, x+b=0 Rightarrow mathrm, x=-dfrac ba)
Пример 6. Решить уравнение (sin x+cos x=0)
Разделим правую и левую части уравнения на (sin x) :
(1+mathrm, x=0 Rightarrow mathrm, x=-1 Rightarrow x=-dfrac4+pi n, ninmathbb)
Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:
1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: (<large<sin x=2sincos, qquad cos x=cos^2 -sin^2 ,qquad c=ccdot Big(sin^2 +cos^2 Big)>>) данное уравнение сведется к уравнению (I) :
Пример 7. Решить уравнение (sin 2x-sqrt3 cos 2x=-1)
Распишем (sin 2x=2sin xcos x, cos 2x=cos^2x-sin^2 x, -1=-sin^2 x-cos^2x) . Тогда уравнение примет вид:
((1+sqrt3)sin^2x+2sin xcos x+(1-sqrt3)cos^2x=0) . Данное уравнение с помощью деления на (cos^2x) и замены (mathrm,x=t) сводится к:
((1+sqrt3)t^2+2t+1-sqrt3=0) . Корнями этого уравнения являются (t_1=-1, t_2=dfrac=2-sqrt3) . Сделаем обратную замену:
2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: [begin hline &&&\ sin=dfrac<2mathrm, dfrac2><1+mathrm^2, dfrac2> &&& cos=dfrac<1-mathrm^2, dfrac2><1+mathrm^2, dfrac2>\&&&\ hline end] уравнение сведется к квадратному уравнению относительно (mathrm, dfrac x2)
Пример 8. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)
(dfrac=0 Rightarrow (sqrt3+1)t^2+2t+1-sqrt3=0) (т.к. (1+t^2geqslant 1) при всех (t) , то есть всегда (ne 0) )
Таким образом, мы получили то же уравнение, что и, решая первым способом.
Для использования данной формулы нам понадобятся формулы сложения углов: [begin hline &&&\ sin=sinalphacdot cosbetapm sinbetacdot cosalpha &&& cos=cosalphacdot cosbeta mp sinalphacdot sinbeta\ &&&\ hline end]
Пример 9. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)
Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на (sqrt=2) :
(dfrac12sin 2x-dfrac2cos 2x=-dfrac12)
Заметим, что числа (dfrac12) и (dfrac2) получились табличные. Можно, например, взять за (dfrac12=cos dfrac3, dfrac2=sin dfrac3) . Тогда уравнение примет вид:
Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду). Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.
Вынесем общий множитель за скобки в правой части: (3sin 2x+3cos 2x=8sin xcos x(2cos^2 x-1)) . По формулам двойного угла (2sin xcos x=sin 2x, 2cos^2x-1=cos 2x) имеем: [3(sin 2x+cos 2x)=4sin 2xcos 2x] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену (t=sin 2x+cos 2x) , тогда (sin 2xcos 2x=dfrac2) . Тогда уравнение примет вид: [3t=2t^2-2 Rightarrow 2t^2-3t-2=0] Корнями данного уравнения являются (t_1=2, t_2=-dfrac12) .
По формулам вспомогательного аргумента (sin2x+cos 2x=sqrt2sinleft(2x+dfrac4right)) , следовательно, сделав обратную замену: [left[ begin begin &sqrt2sinleft(2x+dfrac4right)=2\[1ex] &sqrt2sinleft(2x+dfrac4right)=-dfrac12 end end right. Rightarrow left[ begin begin &sinleft(2x+dfrac4right)=sqrt2\[1ex] &sinleft(2x+dfrac4right)=-dfrac1 end end right.] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от (-1) до (1) . Значит: (sinleft(2x+dfrac4right)=-dfrac1 Rightarrow left[ begin begin &2x+dfrac4=-arcsin <dfrac1>+2pi n\[1ex] &2x+dfrac4=pi+arcsin <dfrac1>+2pi n end end right. Rightarrow ) (Rightarrow left[ begin begin &x=-dfrac12arcsin <dfrac1>-dfrac8+pi n\[1ex] &x=dfrac8+dfrac12arcsin <dfrac1>+pi n end end right. ninmathbb)
(blacktriangleright) Формулы сокращенного умножения в тригонометрическом варианте:
(I) Квадрат суммы или разности ((Apm B)^2=A^2pm 2AB+B^2) :
((sin xpm cos x)^2=sin^2 xpm 2sin xcos x+cos^2x=(sin^2 x+cos^2 x)pm 2sin xcos x=1pm sin 2x)
(II) Разность квадратов (A^2-B^2=(A-B)(A+B)) :
((cos x-sin x)(cos x+sin x)=cos^2x-sin^2x=cos 2x)
(III) Сумма или разность кубов (A^3pm B^3=(Apm B)(A^2mp AB+B^2)) :
(sin^3xpm cos^3x=(sin xpm cos x)(sin^2xmp sin xcos x+cos^2x)=(sin xpm cos x)(1mp sin xcos x)=)