Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:
где (t) – выражение с иксом, (a) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:
Решим уравнение с помощью числовой окружности. Для этого: 1) Построим оси. 2) Построим окружность. 3) На оси синусов (оси (y)) отметим точку (-) (frac) . 4) Проведем перпендикуляр к оси синусов через эту точку. 5) Отметим точки пересечения перпендикуляра и окружности. 6)Подпишем значения этих точек: (-) (frac) ,(-) (frac) . 7) Запишем все значения соответствующие этим точкам с помощью формулы (x=t+2πk), (k∈Z): (x=-) (frac) (+2πk), (k∈Z); (x=-) (frac) (+2πn), (n∈Z)
Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .
Внимание! Уравнения (sinx=a) и (cosx=a) не имеют решений, если (a ϵ (-∞;-1)∪(1;∞)). Потому что синус и косинус при любых икс больше или равны (-1) и меньше или равны (1):
Пример. Решить уравнение (cosx=-1,1). Решение: (-1,1 (frac) , (frac) 7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в (π), то все значения можно записать одной формулой:
Опять воспользуемся числовой окружностью. 1) Построим окружность, оси (x) и (y). 2) На оси косинусов (ось (x)) отметим (0). 3) Проведем перпендикуляр к оси косинусов через эту точку. 4) Отметим точки пересечения перпендикуляра и окружности. 5) Подпишем значения этих точек: (-) (frac),(frac) . 6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).
7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.
8) Как обычно в уравнениях будем выражать (x). Не забывайте относиться к числам с (π), так же к (1), (2), (frac) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!
Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений: — Метод введения новой переменной (самый популярный в ЕГЭ). — Метод разложения на множители . — Метод вспомогательных аргументов.
Рассмотрим пример решения квадратно-тригонометрического уравнения
Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .
(D=25-4 cdot 2 cdot 2=25-16=9)
Делаем обратную замену.
Первое уравнение решаем с помощью числовой окружности. Второе уравнение не имеет решений т.к. (cosx∈[-1;1]) и двум быть равен не может ни при каких иксах.
Запишем все числа, лежащие на числовой окружности в этих точках.
Ответ: (x=±) (frac) (+2πk), (k∈Z).
Пример решения тригонометрического уравнения с исследованием ОДЗ:
Есть дробь и есть котангенс – значит надо записать ОДЗ . Напомню, что котангенс это фактически дробь:
Потому ОДЗ для ctg(x): (sinx≠0).
Отметим «нерешения» на числовой окружности.
Видео:КОГДА ПИСАТЬ +Пк, а когда +2Пк? (Задание 13 по Тригонометрии ЕГЭ 2024 по Математике Профиль)Скачать
РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнениеcosx=a
Объяснение и обоснование
Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cosx| ≤ 1 для любого x (прямая y=a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sinx| ≤ 1 для любого x (прямая y=a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n∈Z (3)
2.Частые случаи решения уравненияsinx=a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sinx= 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sinx= 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sinx= -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравненияtgx=aиctgx=a
Объяснение и обоснование
1.Корни уравненийtgx=aиctgx=a
Рассмотрим уравнение tgx=a. На промежутке функция y=tgx возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tgx=a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен:x1=arctga и для этого корня tgx=a.
Функция y=tgx периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n∈Z). Получаем следующую формулу корней уравнения tgx=a:
При a=0 arctg0 = 0, таким образом, уравнение tgx= 0 имеет корни x= πn(n∈Z).
Рассмотрим уравнение ctgx=a. На промежутке (0; π) функция y=ctgx убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctgx=a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctga.
Функция y=ctgx периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctgx=a:
таким образом, уравнение ctgx= 0имеет корни
Примеры решения задач
Вопросы для контроля
Какие уравнения называют простейшими тригонометрическими?
Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
Выведите формулы решения простейших тригонометрических уравнений.
Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:А ты знаешь, когда в тригонометрических уравнениях писать пk, а когда 2пk? #математика #егэ2023 #егэСкачать
Когда в тригонометрических уравнениях писать к а когда n
Видео:Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать
1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Что есть ответ на тригонометрическое уравнение? Тригонометрические уравнения Часть 1 из 6.Скачать
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y1 = — 1, y2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид: