Когда в тригонометрических уравнениях писать к а когда n

Тригонометрические уравнения. Как решать тригонометрические уравнения?

Тригонометрические уравнения – уравнения, содержащие переменную под знаком тригонометрических функций.

Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов , косинусов , тангенсов и котангенсов .

Видео:А ты знаешь, когда в тригонометрических уравнениях писать пk, а когда 2пk? #математика #егэ2023 #егэСкачать

А ты знаешь, когда в тригонометрических уравнениях писать пk, а когда 2пk? #математика #егэ2023 #егэ

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

где (t) – выражение с иксом, (a) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности ( тригонометрического круга ) или специальных формул:

(sin ⁡x=a) (⇔) ( left[ beginx=arcsin a+2πn, n∈Z\ x=π-arcsin a+2πl, l∈Zendright.)
если (a∈[-1;1])

Инфографику о решении простейших тригонометрических уравнений смотри здесь: (sinx=a) , (cosx=a) , (tgx=a) и (ctgx=a) .

Пример. Решите тригонометрическое уравнение (sin⁡x=-)(frac).
Решение:

Когда в тригонометрических уравнениях писать к а когда n

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси синусов (оси (y)) отметим точку (-) (frac) .
4) Проведем перпендикуляр к оси синусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: (-) (frac) ,(-) (frac) .
7) Запишем все значения соответствующие этим точкам с помощью формулы (x=t+2πk), (k∈Z):
(x=-) (frac) (+2πk), (k∈Z); (x=-) (frac) (+2πn), (n∈Z)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео .

Внимание! Уравнения (sin⁡x=a) и (cos⁡x=a) не имеют решений, если (a ϵ (-∞;-1)∪(1;∞)). Потому что синус и косинус при любых икс больше или равны (-1) и меньше или равны (1):

Пример. Решить уравнение (cos⁡x=-1,1).
Решение: (-1,1 (frac) , (frac)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в (π), то все значения можно записать одной формулой:

Ответ: (x=) (frac) (+πk), (k∈Z).

Пример. Решите тригонометрическое уравнение (cos⁡(3x+frac)=0).
Решение:

Когда в тригонометрических уравнениях писать к а когда n

Опять воспользуемся числовой окружностью.
1) Построим окружность, оси (x) и (y).
2) На оси косинусов (ось (x)) отметим (0).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: (-) (frac),(frac) .
6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).

7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.

8) Как обычно в уравнениях будем выражать (x).
Не забывайте относиться к числам с (π), так же к (1), (2), (frac) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

Ответ: (x=) (frac) (+) (frac) (x=-) (frac) (+) (frac) , (k∈Z).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы , и особые методы решений уравнений:
— Метод введения новой переменной (самый популярный в ЕГЭ).
— Метод разложения на множители .
— Метод вспомогательных аргументов.

Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример. Решите тригонометрическое уравнение (2cos^2⁡x-5cos⁡x+2=0)
Решение:

Сделаем замену (t=cos⁡x).

Наше уравнение превратилось в типичное квадратное . Можно его решить с помощью дискриминанта .

(D=25-4 cdot 2 cdot 2=25-16=9)

Делаем обратную замену.

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. (cos⁡x∈[-1;1]) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на числовой окружности в этих точках.

Когда в тригонометрических уравнениях писать к а когда n

Ответ: (x=±) (frac) (+2πk), (k∈Z).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ). Решите тригонометрическое уравнение (frac<2cos^2⁡x-sin>) (=0)

Есть дробь и есть котангенс – значит надо записать ОДЗ . Напомню, что котангенс это фактически дробь:

Потому ОДЗ для ctg(x): (sin⁡x≠0).

Когда в тригонометрических уравнениях писать к а когда n

Отметим «нерешения» на числовой окружности.

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Когда в тригонометрических уравнениях писать к а когда n

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Когда в тригонометрических уравнениях писать к а когда n

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Когда в тригонометрических уравнениях писать к а когда n

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Когда в тригонометрических уравнениях писать к а когда n

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Когда в тригонометрических уравнениях писать к а когда n

Примеры решения задач

Когда в тригонометрических уравнениях писать к а когда n

Замечание. Ответ к задаче 1 часто записывают в виде:

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

19.3. Уравнения tg x = a и ctg x = a

Когда в тригонометрических уравнениях писать к а когда n

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Когда в тригонометрических уравнениях писать к а когда nфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Когда в тригонометрических уравнениях писать к а когда n

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

таким образом, уравнение ctg x = 0 имеет корни

Когда в тригонометрических уравнениях писать к а когда n

Примеры решения задач

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Найдите корни уравнения на заданном промежутке (12-13)

Видео:КОГДА ПИСАТЬ +Пк, а когда +2Пк? (Задание 13 по Тригонометрии ЕГЭ 2024 по Математике Профиль)Скачать

КОГДА ПИСАТЬ +Пк, а когда +2Пк? (Задание 13 по Тригонометрии ЕГЭ 2024 по Математике Профиль)

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Видео:Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

Методы решения тригонометрических уравнений.

Видео:Что есть ответ на тригонометрическое уравнение? Тригонометрические уравнения Часть 1 из 6.Скачать

Что есть ответ на тригонометрическое уравнение? Тригонометрические уравнения Часть 1 из 6.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Когда в тригонометрических уравнениях писать к а когда n

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Когда в тригонометрических уравнениях писать к а когда n

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Когда в тригонометрических уравнениях писать к а когда n

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Когда в тригонометрических уравнениях писать к а когда n

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Когда в тригонометрических уравнениях писать к а когда n

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Когда в тригонометрических уравнениях писать к а когда n

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Когда в тригонометрических уравнениях писать к а когда nи sin Когда в тригонометрических уравнениях писать к а когда n( здесь Когда в тригонометрических уравнениях писать к а когда n— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Когда в тригонометрических уравнениях писать к а когда n

Когда в тригонометрических уравнениях писать к а когда n

Видео:Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

🔍 Видео

10 класс. Способы решения тригонометрических уравненийСкачать

10 класс. Способы решения тригонометрических уравнений

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯСкачать

ЕГЭ-ПРОФИЛЬ. ЗАДАНИЕ-1. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой
Поделиться или сохранить к себе: