Когда уравнение равно нулю то

Уравнения равные нулю

Что такое «уравнения равные нулю»?

Если в левой части уравнения стоит сумма или разность одночленов или многочленов, а в правой части — нуль, то это может быть обычное линейное уравнение.

Если левая часть уравнения представляет собой произведения двух или нескольких множителей, а правая часть — нуль, то это — уравнение типа «произведение равно нулю».

В общем виде простейшие равные нулю уравнения можно записать как

Когда уравнение равно нулю то

(множителей может быть больше).

Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому приравниваем к нулю каждый множитель:

Когда уравнение равно нулю то

и решаем каждое из полученных уравнений отдельно.

Когда уравнение равно нулю то

Это — уравнение типа «произведение равно нулю».

Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Если в уравнении, равном 0, левую часть можно разложить на множители, то такое уравнение также можно решить как уравнение типа «произведение равно 0».

Когда уравнение равно нулю то

Сгруппируем первое слагаемое с третьим, а четвёртое — со вторым:

Когда уравнение равно нулю то

Из первых скобок вынесем за скобки общий множитель x², из вторых — 4:

Когда уравнение равно нулю то

Общий множитель (x-3) вынесем за скобки:

Когда уравнение равно нулю то

Получили уравнение типа «произведение равно 0». Приравниваем к нулю каждый из множителей:

Когда уравнение равно нулю то

Корень первого уравнения —

Когда уравнение равно нулю то

Второе уравнение не имеет корней (сумма положительных чисел не может равняться нулю).

В алгебре многие уравнения сводятся к уравнениям типа «произведение равно нулю» с помощью разложения на множители.

Множители могут линейными, квадратными, логарифмическими, тригонометрическими и т.д. уравнениями.

Еще один важный частный случай уравнений, равных нулю, рассмотрим позже.

13 комментариев

Показательное уравнение:
3^((x+2)/(3x-4))-2*3^((5x-10)/(3x-4))-7=0
Корень известен: x=2.
Подскажите, пожалуйста, как найти решение. Преобразовать в квадратное уравнение что-то не получается.

Видео:Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.Скачать

Уравнение в котором произведение множителей равно нулю. Алгебра 7 класс.

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Когда уравнение равно нулю то

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Решите уравнение ➜ Определитель третьего порядка равен нулюСкачать

Решите уравнение ➜ Определитель третьего порядка равен нулю

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Когда уравнение равно нулю то

Вернем получившееся равенство Когда уравнение равно нулю тов первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Когда уравнение равно нулю то

Пример 4. Рассмотрим равенство Когда уравнение равно нулю то

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Когда уравнение равно нулю то

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Когда уравнение равно нулю то

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Когда уравнение равно нулю то

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Когда уравнение равно нулю то

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Когда уравнение равно нулю то

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Когда уравнение равно нулю то

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Когда уравнение равно нулю то

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Когда уравнение равно нулю то

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Когда уравнение равно нулю то

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Когда уравнение равно нулю то

Чтобы выразить число 3 мы поступили следующим образом:

Когда уравнение равно нулю то

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Когда уравнение равно нулю то

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Когда уравнение равно нулю то

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Когда уравнение равно нулю то

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Когда уравнение равно нулю то

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Когда уравнение равно нулю топозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Когда уравнение равно нулю тотребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Когда уравнение равно нулю то

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Когда уравнение равно нулю товместо числа 15 располагается переменная x

Когда уравнение равно нулю то

В этом случае переменная x берет на себя роль неизвестного делимого.

Когда уравнение равно нулю то

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Когда уравнение равно нулю то. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Когда уравнение равно нулю товместо числа 5 располагается переменная x .

Когда уравнение равно нулю то

В этом случае переменная x берет на себя роль неизвестного делителя.

Когда уравнение равно нулю то

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Когда уравнение равно нулю то. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Когда уравнение равно нулю то

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Когда уравнение равно нулю то

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Когда уравнение равно нулю то

Компонентами умножения являются множимое, множитель и произведение

Когда уравнение равно нулю то

Компонентами деления являются делимое, делитель и частное

Когда уравнение равно нулю то

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Когда уравнение равно нулю то

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Когда уравнение равно нулю то

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Когда уравнение равно нулю то

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Когда уравнение равно нулю то

Вычислим правую часть получившегося уравнения:

Когда уравнение равно нулю то

Мы получили новое уравнение Когда уравнение равно нулю то. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Когда уравнение равно нулю то

При этом переменная x является не просто множителем, а неизвестным множителем

Когда уравнение равно нулю то

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Когда уравнение равно нулю то

Вычислим правую часть, получим значение переменной x

Когда уравнение равно нулю то

Для проверки найденный корень отправим в исходное уравнение Когда уравнение равно нулю тои подставим вместо x

Когда уравнение равно нулю то

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Когда уравнение равно нулю то

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Когда уравнение равно нулю то

Отсюда x равен 2

Когда уравнение равно нулю то

Видео:Уравнение алгебраическая дробь равная нулю. Алгебра 8 класс.Скачать

Уравнение  алгебраическая дробь равная нулю. Алгебра 8 класс.

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Когда уравнение равно нулю то

Согласно порядку действий, в первую очередь выполняется умножение:

Когда уравнение равно нулю то

Подставим корень 2 во второе уравнение 28x = 56

Когда уравнение равно нулю то

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Когда уравнение равно нулю то

Вычтем из обеих частей уравнения число 10

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях:

Когда уравнение равно нулю то

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то.

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 2

Когда уравнение равно нулю то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Когда уравнение равно нулю томы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Когда уравнение равно нулю то. Корень этого уравнения, как и уравнения Когда уравнение равно нулю тотак же равен 2

Когда уравнение равно нулю то

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Когда уравнение равно нулю то

Вычтем из обеих частей уравнения число 12

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях уравнения:

Когда уравнение равно нулю тоВ левой части останется 4x , а в правой части число 4

Когда уравнение равно нулю то

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Когда уравнение равно нулю то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Когда уравнение равно нулю то

Пример 3. Решить уравнение Когда уравнение равно нулю то

Раскроем скобки в левой части равенства:

Когда уравнение равно нулю то

Прибавим к обеим частям уравнения число 8

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях уравнения:

Когда уравнение равно нулю то

В левой части останется 2x , а в правой части число 9

Когда уравнение равно нулю то

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 4,5

Когда уравнение равно нулю то

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Когда уравнение равно нулю томы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Когда уравнение равно нулю то. Корень этого уравнения, как и уравнения Когда уравнение равно нулю тотак же равен 4,5

Когда уравнение равно нулю то

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Когда уравнение равно нулю то

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Когда уравнение равно нулю то

Получается верное равенство. Значит число 2 действительно является корнем уравнения Когда уравнение равно нулю то.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Когда уравнение равно нулю то

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Когда уравнение равно нулю то

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Когда уравнение равно нулю то

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Когда уравнение равно нулю то

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Когда уравнение равно нулю то

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Когда уравнение равно нулю то

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Когда уравнение равно нулю то

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Когда уравнение равно нулю то

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Когда уравнение равно нулю то

В результате останется простейшее уравнение

Когда уравнение равно нулю то

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Когда уравнение равно нулю то

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 4

Когда уравнение равно нулю то

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Когда уравнение равно нулю то. Корень этого уравнения, как и уравнения Когда уравнение равно нулю торавен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Когда уравнение равно нулю то, мы умножили обе части на множитель 8 и получили следующую запись:

Когда уравнение равно нулю то

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Когда уравнение равно нулю тона множитель 8 желательно переписать следующим образом:

Когда уравнение равно нулю то

Пример 2. Решить уравнение Когда уравнение равно нулю то

Умнóжим обе части уравнения на 15

Когда уравнение равно нулю то

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Когда уравнение равно нулю то

Перепишем то, что у нас осталось:

Когда уравнение равно нулю то

Раскроем скобки в правой части уравнения:

Когда уравнение равно нулю то

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях, получим

Когда уравнение равно нулю то

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 5

Когда уравнение равно нулю то

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Когда уравнение равно нулю торавен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Когда уравнение равно нулю то

Умнóжим обе части уравнения на 3

Когда уравнение равно нулю то

В левой части можно сократить две тройки, а правая часть будет равна 18

Когда уравнение равно нулю то

Останется простейшее уравнение Когда уравнение равно нулю то. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Когда уравнение равно нулю то

Отсюда Когда уравнение равно нулю то

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 9

Когда уравнение равно нулю то

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Когда уравнение равно нулю то

Умнóжим обе части уравнения на 6

Когда уравнение равно нулю то

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Когда уравнение равно нулю то

Сократим в обеих частях уравнениях то, что можно сократить:

Когда уравнение равно нулю то

Перепишем то, что у нас осталось:

Когда уравнение равно нулю то

Раскроем скобки в обеих частях уравнения:

Когда уравнение равно нулю то

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях:

Когда уравнение равно нулю то

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Когда уравнение равно нулю то

Вернемся к исходному уравнению Когда уравнение равно нулю тои подставим вместо x найденное значение 4

Когда уравнение равно нулю то

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Когда уравнение равно нулю то

Раскроем скобки в обеих частях уравнения там, где это можно:

Когда уравнение равно нулю то

Умнóжим обе части уравнения на 15

Когда уравнение равно нулю то

Раскроем скобки в обеих частях уравнения:

Когда уравнение равно нулю то

Сократим в обеих частях уравнения, то что можно сократить:

Когда уравнение равно нулю то

Перепишем то, что у нас осталось:

Когда уравнение равно нулю то

Раскроем скобки там, где это можно:

Когда уравнение равно нулю то

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Когда уравнение равно нулю то

Приведем подобные слагаемые в обеих частях уравнения:

Когда уравнение равно нулю то

Найдём значение x

Когда уравнение равно нулю то

В получившемся ответе можно выделить целую часть:

Когда уравнение равно нулю то

Вернемся к исходному уравнению и подставим вместо x найденное значение Когда уравнение равно нулю то

Когда уравнение равно нулю то

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Когда уравнение равно нулю то

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Когда уравнение равно нулю то

Значение переменной А равно Когда уравнение равно нулю то. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Когда уравнение равно нулю то, то уравнение будет решено верно

Когда уравнение равно нулю то

Видим, что значение переменной B , как и значение переменной A равно Когда уравнение равно нулю то. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Когда уравнение равно нулю то

Подставим найденное значение 2 вместо x в исходное уравнение:

Когда уравнение равно нулю то

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Когда уравнение равно нулю то

Выполним сокращение в каждом слагаемом:

Когда уравнение равно нулю то

Перепишем то, что у нас осталось:

Когда уравнение равно нулю то

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Когда уравнение равно нулю то

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Когда уравнение равно нулю то

Этим методом мы тоже будем пользоваться часто.

Видео:6. Квадратное уравнение. Дискриминант равен нулю.Скачать

6. Квадратное уравнение. Дискриминант равен нулю.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Когда уравнение равно нулю то. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Когда уравнение равно нулю то

Приведем подобные слагаемые:

Когда уравнение равно нулю то

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Когда уравнение равно нулю то. Это есть произведение минус единицы и переменной x

Когда уравнение равно нулю то

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Когда уравнение равно нулю тона самом деле выглядит следующим образом:

Когда уравнение равно нулю то

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Когда уравнение равно нулю то

или разделить обе части уравнения на −1 , что еще проще

Когда уравнение равно нулю то

Итак, корень уравнения Когда уравнение равно нулю торавен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Когда уравнение равно нулю то

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Когда уравнение равно нулю тона минус единицу:

Когда уравнение равно нулю то

После раскрытия скобок в левой части образуется выражение Когда уравнение равно нулю то, а правая часть будет равна 10

Когда уравнение равно нулю то

Корень этого уравнения, как и уравнения Когда уравнение равно нулю торавен 5

Когда уравнение равно нулю то

Значит уравнения Когда уравнение равно нулю тои Когда уравнение равно нулю торавносильны.

Пример 2. Решить уравнение Когда уравнение равно нулю то

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Когда уравнение равно нулю то. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Когда уравнение равно нулю тона −1 можно записать подробно следующим образом:

Когда уравнение равно нулю то

либо можно просто поменять знаки всех компонентов:

Когда уравнение равно нулю то

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Когда уравнение равно нулю тона −1 , мы получили уравнение Когда уравнение равно нулю то. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда уравнение равно нулю то

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Когда уравнение равно нулю то

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Когда уравнение равно нулю то

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Когда уравнение равно нулю то

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Когда уравнение равно нулю то

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Когда уравнение равно нулю то. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Когда уравнение равно нулю то

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Когда уравнение равно нулю то

Приведем подобные слагаемые в левой части:

Когда уравнение равно нулю то

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Когда уравнение равно нулю томы произведение 10 делили на известный сомножитель 2

Когда уравнение равно нулю то

Но если в уравнении Когда уравнение равно нулю тообе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Когда уравнение равно нулю то

Уравнения вида Когда уравнение равно нулю томы решали выражая неизвестное слагаемое:

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Когда уравнение равно нулю тослагаемое 4 можно перенести в правую часть, изменив знак:

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Далее разделить обе части на 2

Когда уравнение равно нулю то

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Когда уравнение равно нулю то.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Когда уравнение равно нулю то

В случае с уравнениями вида Когда уравнение равно нулю тоудобнее делить произведение на известный сомножитель. Сравним оба решения:

Когда уравнение равно нулю то

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:Уравнения. Когда произведение равно нулю. ОГЭ.Скачать

Уравнения. Когда произведение равно нулю. ОГЭ.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Когда уравнение равно нулю то

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Когда уравнение равно нулю то

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Когда уравнение равно нулю то

Подставляем по-очереди найденные значения в исходное уравнение Когда уравнение равно нулю тои убеждаемся, что при этих значениях левая часть равняется нулю:

Когда уравнение равно нулю то

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Когда уравнение равно нулю то

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Когда уравнение равно нулю то

Пример 2. Решить уравнение Когда уравнение равно нулю то

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Когда уравнение равно нулю тоне имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Когда уравнение равно нулю то. Тогда уравнение примет следующий вид

Когда уравнение равно нулю то

Пусть Когда уравнение равно нулю то

Когда уравнение равно нулю то

Пример 2. Решить уравнение Когда уравнение равно нулю то

Раскроем скобки в левой части равенства:

Когда уравнение равно нулю то

Приведем подобные слагаемые:

Когда уравнение равно нулю то

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Когда уравнение равно нулю то

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Когда уравнение равно нулю то

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Когда уравнение равно нулю тоопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Когда уравнение равно нулю тона t

Когда уравнение равно нулю то

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Когда уравнение равно нулю то

В получившемся уравнении левую и правую часть поменяем местами:

Когда уравнение равно нулю то

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Когда уравнение равно нулю тоопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Когда уравнение равно нулю то

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Когда уравнение равно нулю то

В получившемся уравнении v × t = s обе части разделим на v

Когда уравнение равно нулю то

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Когда уравнение равно нулю то

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Когда уравнение равно нулю топримет следующий вид

Когда уравнение равно нулю то

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Когда уравнение равно нулю то

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Когда уравнение равно нулю то

Затем разделить обе части на 50

Когда уравнение равно нулю то

Пример 2. Дано буквенное уравнение Когда уравнение равно нулю то. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Когда уравнение равно нулю то

Разделим обе части уравнения на b

Когда уравнение равно нулю то

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Когда уравнение равно нулю то

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Когда уравнение равно нулю то. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Когда уравнение равно нулю то

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Когда уравнение равно нулю то

В левой части вынесем за скобки множитель x

Когда уравнение равно нулю то

Разделим обе части на выражение a − b

Когда уравнение равно нулю то

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Когда уравнение равно нулю то

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Когда уравнение равно нулю то

Когда уравнение равно нулю то

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Когда уравнение равно нулю то

Пример 4. Дано буквенное уравнение Когда уравнение равно нулю то. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Когда уравнение равно нулю то

Умнóжим обе части на a

Когда уравнение равно нулю то

В левой части x вынесем за скобки

Когда уравнение равно нулю то

Разделим обе части на выражение (1 − a)

Когда уравнение равно нулю то

Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Когда уравнение равно нулю то

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Когда уравнение равно нулю топримет вид Когда уравнение равно нулю то.
Отсюда Когда уравнение равно нулю то.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Решение простых линейных уравнений

Когда уравнение равно нулю то

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать

Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетитор

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Когда уравнение равно нулю то

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Когда уравнение равно нулю то

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Когда уравнение равно нулю то

  1. Когда уравнение равно нулю то
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

📹 Видео

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.
Поделиться или сохранить к себе: