Когда уравнение имеет корни разных знаков

Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Квадратные уравнения с параметром

Уравнение называется квадратным, если имеет вид (ax^2+bx+c=0,) где (a,b,c) — любые числа ((a≠0)). При этом надо быть внимательным, если (a=0), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при (x^2) и рассматривать 2 случая: (a=0) (линейное уравнение); (a≠0) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Исследование квадратного многочлена

Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:

  • Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа (γ): (x_1≤x_2 0)); ветки параболы направлены вниз ((a 0). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число (γ) должно по условию лежать вне отрезка ((x_1,x_2)), то (f(γ)>0).
  • (a 0). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа (γ).

В итоге получаем:

если (a*f(γ) 0), то (γ∉(x_1,x_2)).

Нам осталось наложить условие, чтобы наши корни были слева от числа (γ). Здесь нужно просто сравнить положение вершины нашей параболы (x_0) относительно (γ). Заметим, что вершина лежит между точками (x_1) и (x_2). Если (x_0 0, \x_0 Когда уравнение имеет корни разных знаков

При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?

1 случай: Если (a(a+3)=0), то уравнение будет линейным. При (a=0) исходное уравнение превращается в (6x-9=0), корень которого (x=1,5). Таким образом, при (a=0) уравнение имеет один корень.
При (a=-3) получаем (0*x^2+0*x-0=0), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.

2 случай: Если (a≠0; a≠-3), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-frac.$$ С учетом (a≠0;) (a≠-3), получим, что уравнение имеет два корня при (a∈(-frac;0)∪(0;+∞)). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):

Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку ([-2;2]).

1 случай: Если (a=-1), то (0*x^2-x+1-1=0) отсюда (x=0). Это решение принадлежит ([-2;2]).

2 случай: При (a≠-1), получаем квадратное уравнение, с условием, что все корни принадлежат ([-2;2]). Для решения введем функцию (f(x)=(a+1) x^2-(a^2+2a)x-a-1) и запишем систему, которая задает требуемые условия:

Подставляем полученные выражения в систему:

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Когда уравнение имеет корни разных знаков

КВАДРАТНЫЙ ТРЕХЧЛЕН III

§ 53. Исследование знаков корней квадратного уравнения по его коэффициентам

Используя теорему Виета, можно, не решая уравнения x 2 + px + q = 0. определить, какими будут его корни: положительными или отрицательными. Но при этом, конечно, нужно быть уверенным в том, что рассматриваемое уравнение имеет корни. Если же корней нет, то говорить о знаках корней не имеет смысла. Поэтому на протяжении всего этого параграфа мы будем предполагать, что рассматриваемое приведенное квадратное уравнение x 2 + px + q = 0 имеет корни, то есть дискриминант его неотрицателен.

1) Пусть q > 0; тогда оба корня имеют одинаковые знаки, поскольку x1 • х2= q > 0.
Если к тому же р 0, значит, оба корня положительны.
Если р > 0, то x1 + х2 = — р 0, то x1 + х2 = — р 0. Это возможно только тогда, когда положительный корень больше абсолютной величины отрицательного корня.
При р = 0 x1 + х2 = 0, откуда x1= — х2 в этом случае корни равны по абсолютной величине и противоположны по знаку.

3) Осталось рассмотреть случай, когда q = 0. Тогда x1 • х2 = 0, поэтому хотя бы один из корней равен нулю.
Пусть для определенности x1 = 0, тогда другой корень найдется из условия x1 + х2 = — р, откуда х2 = — р. Значит, в этом случае один корень равен нулю, а другой представляет собой число, противоположное коэффициенту р.
Если же и р = 0, то уравнение имеет , два равных корня: x1= х2 = 0.

Полученные результаты исследования знаков корней представлены в таблице .

Когда уравнение имеет корни разных знаков

Еще раз отметим, что приведенные здесь рассуждения верны лишь в предположении, что исследуемое уравнение имеет действительные корни, то есть его дискриминант неотрицателен.

Рассмотрим несколько примеров на исследование знаков корней квадратных уравнений.

1) x 2 — 8х — 9 = 0. Дискриминант этого уравнения равен D = 64 + 36 = 100 > 0. Поэтому уравнение имеет два различных действительных корня.
Вследствие того, что x1 • х2 = — 9, корни должны иметь разные знаки,
а так как x1 + х2 = 8, то абсолютная величина отрицательного корня меньше положительного корня.

2) x 2 + 7х + 10 = 0. Дискриминант этого уравнения равен D = 49 — 40 = 9 > 0. Поэтому уравнение имеет два различных действительных корня.
Так как x1 • х2 = 10 > 0, то корни имеют одинаковые знаки.
Кроме того, x1 + х2 = —7, значит, оба корня отрицательны.

3) x 2 — х + 1 = 0. Для данного уравнения

D = (—1) 2 — 4 = — 3 2 + bx + c = 0 . Для этого сначала нужно посредством деления на а привести данное уравнение к приведенному квадратному уравнению x 2 + b /a х + c /a = 0, а затем для этого уравнения провести описанные выше рассуждения.

Пусть, например, нужно исследовать знаки корней уравнения —3x 2 + 5х — 2 == 0. Дискриминант этого уравнения равен D = 25 — 24 = 1 > 0. Поэтому оно имеет два различных действительных корня.

Разделив обе части уравнения на — 3, получим: x 2 — 5 /3х + 2 /3 = 0. Отсюда видно, что корни данного уравнения имеют одинаковые знаки, так как x1 • х2 = 2 /3 > 0. Кроме того, x1 + х2 = 5 /3 > 0. Следовательно, оба корня положительны.

Не решая данных уравнений (№ 391—400), определить знаки их корней:

Проверить себя, да и вообще исследовать квадратные уравнения полные и приведенные можно, с помощью соответствующих алгоритмов в программе EXCEL. Алгоритм можно усовершенствовать для отображения промежуточных результатов вычислений.

401. При каких значениях а корни уравнения

имеют одинаковые знаки и при каких — разные?

402. При каких значениях а корни уравнения

имеют одинаковые знаки и при каких — разные?

Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать

Математика 5 класс. Уравнение. Корень уравнения

Квадратные уравнения и квадратичные неравенства с параметрами

Дорогой друг! Если ты никогда не решал задач с параметрами – прочитай статьи «Что такое параметр» и «Графический способ решения задач с параметрами». Квадратные уравнения, а тем более неравенства с параметрами только на первый взгляд кажутся простыми. Чтобы уверенно решать их, надо знать определенные приемы. О некоторых мы расскажем.

Разберем сначала подготовительные задачи. А в конце – реальную задачу ЕГЭ.

1. Найдите все значения a, при которых уравнение не имеет действительных корней.

Всегда ли это уравнение является квадратным относительно переменной х? – Нет, не всегда. В случае, когда коэффициент при равен нулю, оно станет линейным.

Рассмотрим два случая – когда это уравнение квадратное и когда оно линейное.

Тогда уравнение примет вид 2 = 0. Такое уравнение не имеет действительных корней, что удовлетворяет условию задачи.

Уравнение будет квадратным. Квадратное уравнение не имеет действительных корней тогда и только тогда, когда его дискриминант отрицательный.

Если и – корни квадратного уравнения
, то по теореме Виета:

Когда уравнение имеет корни разных знаков

Решим первое неравенство системы

Когда уравнение имеет корни разных знаков

Когда уравнение имеет корни разных знаков

Квадратный трехчлен в левой части не имеет корней, так как дискриминант равен -32, то есть отрицателен. Поэтому неравенство будет выполняться для всех действительных значений .

Возведем второе уравнение системы в квадрат:

Из этих двух уравнений выразим сумму квадратов и .

Значит, сумму квадратов корней уравнения можно выразить через параметр

График функции — парабола, ее ветви направлены вверх, минимум будет достигаться в ее вершине. Найдем вершину параболы:

3) Найдите все значения , при каждом из которых все решения уравнения

Как и в первой задаче, уравнение является квадратным, кроме случая, когда . Рассмотрим этот случай отдельно

1) . Получим линейное уравнение

У него единственный корень, причем положительный. Это удовлетворяет условию задачи.

2) При уравнение будет квадратным. Нам надо, чтобы решения существовали, причем были положительными. Раз решения есть, то .

Покажем один из приемов решения квадратичных уравнений и неравенств с параметрами. Он основан на следующих простых утверждениях:

— Оба корня квадратного уравнения и положительны тогда и только тогда, когда их сумма положительна и произведение положительно.

Очевидно, что сумма и произведение двух положительных чисел также положительны. И наоборот – если сумма и произведение двух чисел положительны, то и сами числа положительны.

— Оба корня квадратного уравнения и отрицательны тогда и только тогда, когда их сумма отрицательна, а произведение положительно.

Корни квадратного уравнения и имеют разные знаки тогда и только тогда, когда их произведение отрицательно.

Сумма и произведение корней входят в формулировку теоремы Виета, которой мы и воспользуемся. Получим

Когда уравнение имеет корни разных знаков

Второе и третье неравенства имеют одинаковое решение . Решение первого неравенства:
.

С учетом пункта 1 получим ответ

4. При каких значениях параметра a уравнение

имеет единственное решение?

Уравнение является показательным, причем однородным. Мы умеем решать такие уравнения! Разделим обе части на .

Сделаем замену Когда уравнение имеет корни разных знаков

Для того, чтобы исходное уравнение имело единственное решение, нужно, чтобы уравнение относительно t имело ровно один положительный корень.

1) В случае уравнение будет линейным

Значит, подходит. В этом случае уравнение имеет единственный положительный корень.

2) Если , уравнение будет квадратным.

Дискриминант является полным квадратом и поэтому всегда неотрицателен. Уравнение имеет либо один, либо два корня. В этом случае несложно найти корни в явном виде.

Один корень получился не зависящим от параметра, причем положительным. Это упрощает задачу.

Для того, чтобы уравнение имело единственный положительный корень, нужно, чтобы либо второй был отрицательным, либо равным нулю, либо чтобы корни совпадали. Рассмотрим все случаи.

Объединив все случаи, получим ответ.

И наконец – реальная задача ЕГЭ.

5. При каких значениях a система имеет единственное решение?

Решением квадратного неравенства может быть:

В каких случаях система двух квадратных неравенств имеет единственное решение:

1) единственная общая точка двух лучей-решений ( или интервалов-решений)

2) одно из неравенств имеет решение – точку, которая является решением второго неравенства

Рассмотрим первый случай.

Если является решением 1 и 2 уравнений, то является решением уравнения (вытекает из второго первое) ⇒ или

Если , при этом система примет вид:

Второй корень первого уравнения:

Второй корень второго первого:

Если , при этом система примет вид:

– бесконечно много решений, не подходит.

Рассмотрим второй случай.

– решением является точка, если – является решением второго неравенства.

– решением является точка, если – не является решением первого неравенства.

📽️ Видео

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Сможешь решить квадратное уравнение с параметром? Найти, когда корни имеют разные знаки...Скачать

Сможешь решить квадратное уравнение с параметром? Найти, когда корни имеют разные знаки...

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

5. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ ИМЕЕТ КОРЕНЬ, РАВНЫЙ ЧИСЛУ ... ?Скачать

5. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ ИМЕЕТ КОРЕНЬ, РАВНЫЙ ЧИСЛУ ... ?

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРА

Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать

Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать

Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.

Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.Скачать

Решение линейного уравнения ax=b. Сколько корней может быть у линейного уравнения. Алгебра 7 класс.

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные
Поделиться или сохранить к себе: