Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Методы решения тригонометрических уравнений.

Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Когда тригонометрические уравнения не имеют решений

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Когда тригонометрические уравнения не имеют решений

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Когда тригонометрические уравнения не имеют решений

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Когда тригонометрические уравнения не имеют решений

Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Когда тригонометрические уравнения не имеют решений

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Когда тригонометрические уравнения не имеют решений

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Когда тригонометрические уравнения не имеют решенийи sin Когда тригонометрические уравнения не имеют решений( здесь Когда тригонометрические уравнения не имеют решений— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Видео:Решение тригонометрических уравнений. 10 класс.Скачать

Решение тригонометрических уравнений. 10 класс.

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Когда тригонометрические уравнения не имеют решений

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Когда тригонометрические уравнения не имеют решений

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Когда тригонометрические уравнения не имеют решений

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Когда тригонометрические уравнения не имеют решений

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Когда тригонометрические уравнения не имеют решений

Примеры решения задач

Когда тригонометрические уравнения не имеют решений

Замечание. Ответ к задаче 1 часто записывают в виде:

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

19.3. Уравнения tg x = a и ctg x = a

Когда тригонометрические уравнения не имеют решений

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке Когда тригонометрические уравнения не имеют решенийфункция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

Когда тригонометрические уравнения не имеют решений

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

таким образом, уравнение ctg x = 0 имеет корни

Когда тригонометрические уравнения не имеют решений

Примеры решения задач

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Когда тригонометрические уравнения не имеют решений

Когда тригонометрические уравнения не имеют решений

Найдите корни уравнения на заданном промежутке (12-13)

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

(blacktriangleright) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к квадратному уравнению.

Часто при решении таких уравнений используются
основные тождества: [begin hline sin^2 alpha+cos^2 alpha =1&& mathrm, alpha cdot mathrm, alpha =1\ &&\ mathrm, alpha=dfrac&&mathrm, alpha =dfrac\&&\ 1+mathrm^2, alpha =dfrac1 && 1+mathrm^2, alpha=dfrac1\&&\ hline end]
формулы двойного угла: [begin hline sin =2sin alphacos alpha & qquad &qquad & cos=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin && & cos=2cos^2alpha -1\ & & & cos=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ hline end]

Пример 1. Решить уравнение (6cos^2x-13sin x-13=0)

С помощью формулы (cos^2alpha=1-sin^2alpha) уравнение сводится к виду:
(6sin^2x+13sin x+7=0) . Сделаем замену (t=sin x) . Т.к. область значений синуса (sin xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:

(6t^2+13t+7=0) . Корни данного уравнения (t_1=-dfrac76, t_2=-1) .

Таким образом, корень (t_1) не подходит. Сделаем обратную замену:
(sin x=-1 Rightarrow x=-dfrac2+2pi n, ninmathbb) .

Пример 2. Решить уравнение (5sin 2x=cos 4x-3)

С помощью формулы двойного угла для косинуса (cos 2alpha=1-2sin^2alpha) имеем:
(cos4x=1-2sin^22x) . Сделаем эту подстановку и получим:

(2sin^22x+5sin 2x+2=0) . Сделаем замену (t=sin 2x) . Т.к. область значений синуса (sin 2xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:

(2t^2+5t+2=0) . Корни данного уравнения (t_1=-2, t_2=-dfrac12) .

Таким образом, корень (t_1) не подходит. Сделаем обратную замену: (sin 2x=-dfrac12 Rightarrow x_1=-dfrac+pi n, x_2=-dfrac+pi n, ninmathbb) .

Пример 3. Решить уравнение (mathrm, x+3mathrm,x+4=0)

Т.к. (mathrm,xcdot mathrm,x=1) , то (mathrm,x=dfrac1<mathrm,x>) . Сделаем замену (mathrm,x=t) . Т.к. область значений тангенса (mathrm,xinmathbb) , то (tinmathbb) . Получим уравнение:

(t+dfrac3t+4=0 Rightarrow dfrac=0) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

Сделаем обратную замену:

(blacktriangleright) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: [begin hline &&&\ sin =3sin alpha -4sin^3alpha &&& cos=4cos^3alpha -3cos alpha\&&&\ hline end]

Пример 4. Решить уравнение (11cos 2x-3=3sin 3x-11sin x)

При помощи формул (sin 3x=3sin x-4sin^3x) и (cos2x=1-2sin^2x) можно свести уравнение к уравнению только с (sin x) :

(12sin^3x-9sin x+11sin x-3+11-22sin^2 x=0) . Сделаем замену (sin x=t, tin[-1;1]) :

(6t^3-11t^2+t+4=0) . Подбором находим, что один из корней равен (t_1=1) . Выполнив деление в столбик многочлена (6t^3-11t^2+t+4) на (t-1) , получим:

((t-1)(2t+1)(3t-4)=0 Rightarrow) корнями являются (t_1=1, t_2=-dfrac12, t_3=dfrac43) .

Таким образом, корень (t_3) не подходит. Сделаем обратную замену:

(blacktriangleright) Однородные тригонометрические уравнения второй степени: [I. quad <Large>, quad ane 0,cne 0]

Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin^2 x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .

Аналогично и (sin x=0) не является решением такого уравнения.

Значит, данное уравнение можно делить на (cos^2 x) или на (sin^2 x) . Разделим, например, на (cos^2 x) :

Таким образом, данное уравнение при помощи деления на (cos^2x) и замены (t=mathrm,x) сводится к квадратному уравнению:

(at^2+bt+c=0) , способ решения которого вам известен.

Уравнения вида [I’. quad <Large>, quad ane0,cne 0] с легкостью сводятся к уравнению вида (I) с помощью использования основного тригонометрического тождества: [d=dcdot 1=dcdot (sin^2x+cos^2x)]

Заметим, что благодаря формуле (sin2x=2sin xcos x) однородное уравнение можно записать в виде

(asin^2 x+bsin 2x+ccos^2x=0)

Пример 5. Решить уравнение (2sin^2x+3sin xcos x=3cos^2x+1)

Подставим вместо (1=sin^2x+cos^2x) и получим:

(sin^2x+3sin xcos x-4cos^2x=0) . Разделим данное уравнение на (cos^2x) :

(mathrm^2,x+3mathrm,x-4=0) и сделаем замену (t=mathrm,x, tinmathbb) . Уравнение примет вид:

(t^2+3t-4=0) . Корнями являются (t_1=-4, t_2=1) . Сделаем обратную замену:

(blacktriangleright) Однородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0]

Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .

Аналогично и (sin x=0) не является решением такого уравнения.

Значит, данное уравнение можно делить на (cos x) или на (sin x) . Разделим, например, на (cos x) :

(a dfrac+b dfrac=0) , откуда имеем (amathrm, x+b=0 Rightarrow mathrm, x=-dfrac ba)

Пример 6. Решить уравнение (sin x+cos x=0)

Разделим правую и левую части уравнения на (sin x) :

(1+mathrm, x=0 Rightarrow mathrm, x=-1 Rightarrow x=-dfrac4+pi n, ninmathbb)

(blacktriangleright) Неоднородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0, cne 0]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: (<large<sin x=2sincos, qquad cos x=cos^2 -sin^2 ,qquad c=ccdot Big(sin^2 +cos^2 Big)>>) данное уравнение сведется к уравнению (I) :

Пример 7. Решить уравнение (sin 2x-sqrt3 cos 2x=-1)

Распишем (sin 2x=2sin xcos x, cos 2x=cos^2x-sin^2 x, -1=-sin^2 x-cos^2x) . Тогда уравнение примет вид:

((1+sqrt3)sin^2x+2sin xcos x+(1-sqrt3)cos^2x=0) . Данное уравнение с помощью деления на (cos^2x) и замены (mathrm,x=t) сводится к:

((1+sqrt3)t^2+2t+1-sqrt3=0) . Корнями этого уравнения являются (t_1=-1, t_2=dfrac=2-sqrt3) . Сделаем обратную замену:

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: [begin hline &&&\ sin=dfrac<2mathrm, dfrac2><1+mathrm^2, dfrac2> &&& cos=dfrac<1-mathrm^2, dfrac2><1+mathrm^2, dfrac2>\&&&\ hline end] уравнение сведется к квадратному уравнению относительно (mathrm, dfrac x2)

Пример 8. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)

(dfrac=0 Rightarrow (sqrt3+1)t^2+2t+1-sqrt3=0) (т.к. (1+t^2geqslant 1) при всех (t) , то есть всегда (ne 0) )

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
[<large<asin x+bcos x=sqrt,sin (x+phi),>> quad text cos phi=dfrac a<sqrt>]

Для использования данной формулы нам понадобятся формулы сложения углов: [begin hline &&&\ sin=sinalphacdot cosbetapm sinbetacdot cosalpha &&& cos=cosalphacdot cosbeta mp sinalphacdot sinbeta\ &&&\ hline end]

Пример 9. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на (sqrt=2) :

(dfrac12sin 2x-dfrac2cos 2x=-dfrac12)

Заметим, что числа (dfrac12) и (dfrac2) получились табличные. Можно, например, взять за (dfrac12=cos dfrac3, dfrac2=sin dfrac3) . Тогда уравнение примет вид:

(sin 2xcos dfrac3-sin dfrac3cos 2x=-dfrac12 Rightarrow sinleft(2x-dfrac3right)=-dfrac12)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

(blacktriangleright) Если тригонометрическое уравнение можно свести к виду [<Large>, text ane 0, bne 0,] то с помощью формулы [<large> (*)] данное уравнение можно свести к квадратному.

Для этого необходимо сделать замену (t=sin xpm cos x) , тогда (sin xcos x=pm dfrac2) .

Заметим, что формула ((*)) есть не что иное, как формула сокращенного умножения ((Apm B)^2=A^2pm 2AB+B^2) при подстановке в нее (A=sin x, B=cos x) .

Пример 10. Решить уравнение (3sin 2x+3cos 2x=16sin xcos^3x-8sin xcos x) .

Вынесем общий множитель за скобки в правой части: (3sin 2x+3cos 2x=8sin xcos x(2cos^2 x-1)) .
По формулам двойного угла (2sin xcos x=sin 2x, 2cos^2x-1=cos 2x) имеем: [3(sin 2x+cos 2x)=4sin 2xcos 2x] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену (t=sin 2x+cos 2x) , тогда (sin 2xcos 2x=dfrac2) . Тогда уравнение примет вид: [3t=2t^2-2 Rightarrow 2t^2-3t-2=0] Корнями данного уравнения являются (t_1=2, t_2=-dfrac12) .

По формулам вспомогательного аргумента (sin2x+cos 2x=sqrt2sinleft(2x+dfrac4right)) , следовательно, сделав обратную замену: [left[ begin begin &sqrt2sinleft(2x+dfrac4right)=2\[1ex] &sqrt2sinleft(2x+dfrac4right)=-dfrac12 end end right. Rightarrow left[ begin begin &sinleft(2x+dfrac4right)=sqrt2\[1ex] &sinleft(2x+dfrac4right)=-dfrac1 end end right.] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от (-1) до (1) . Значит: (sinleft(2x+dfrac4right)=-dfrac1 Rightarrow left[ begin begin &2x+dfrac4=-arcsin <dfrac1>+2pi n\[1ex] &2x+dfrac4=pi+arcsin <dfrac1>+2pi n end end right. Rightarrow )
(Rightarrow left[ begin begin &x=-dfrac12arcsin <dfrac1>-dfrac8+pi n\[1ex] &x=dfrac8+dfrac12arcsin <dfrac1>+pi n end end right. ninmathbb)

(blacktriangleright) Формулы сокращенного умножения в тригонометрическом варианте:

(I) Квадрат суммы или разности ((Apm B)^2=A^2pm 2AB+B^2) :

((sin xpm cos x)^2=sin^2 xpm 2sin xcos x+cos^2x=(sin^2 x+cos^2 x)pm 2sin xcos x=1pm sin 2x)

(II) Разность квадратов (A^2-B^2=(A-B)(A+B)) :

((cos x-sin x)(cos x+sin x)=cos^2x-sin^2x=cos 2x)

(III) Сумма или разность кубов (A^3pm B^3=(Apm B)(A^2mp AB+B^2)) :

(sin^3xpm cos^3x=(sin xpm cos x)(sin^2xmp sin xcos x+cos^2x)=(sin xpm cos x)(1mp sin xcos x)=)

(=(sin xpm cos x)(1mp frac12sin 2x))

(IV) Куб суммы или разности ((Apm B)^3=A^3pm B^3pm 3AB(Apm B)) :

((sin xpm cos x)^3=(sin xpm cos x)(sin xpm cos x)^2=(sin xpm cos x)(1pm sin 2x)) (по первой формуле)

🎥 Видео

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения | Борис Трушин

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Как решать тригонометрические уравнения? 3 способа решения для ЕНТ по математике 2023Скачать

Как решать тригонометрические уравнения? 3 способа решения для ЕНТ по математике 2023

Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. Тригонометрия

0704 Тригонометрические уравнения, не являющиеся простейшимиСкачать

0704 Тригонометрические уравнения, не являющиеся простейшими

Алгебра 10 класс (Урок№47 - Методы решения тригонометрических уравнений.)Скачать

Алгебра 10 класс (Урок№47 - Методы решения тригонометрических уравнений.)

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой
Поделиться или сохранить к себе: