Биквадратные уравнения относятся к разделу школьной алгебры. Метод решения таких уравнений довольно простой, нужно использовать замену переменной.
Рассмотрим алгоритм решения:
-Что такое биквадратное уравнение?
-Как решить биквадратное уравнение?
-Метод замены переменной.
-Примеры биквадратного уравнения.
-Нахождение корней биквадратного уравнения.
Видео:Биквадратные уравнения. 8 класс алгебра.Скачать
Формула биквадратного уравнения:
Формулы биквадратного уравнения отличается от квадратного уравнения тем, что у переменной х степени повышатся в два раза.
ax 4 +bx 2 +c=0, где a≠0
Видео:896 Алгебра 8 класс При каких значениях а уравнение Квадратное имеет 2 корня принадлежащиеСкачать
Как решаются биквадратные уравнения?
Решение биквадратных уравнений сводится сначала к замене, а потом решению квадратного уравнения:
(x^=t,;tgeq0)
t должно быть положительным числом или равным нулю
Получаем квадратное уравнение и решаем его:
at 2 +bt+c=0,
где x и t — переменная,
a, b, c -числовые коэффициенты.
(t^-5t+6=0)
Получилось полное квадратное уравнение, решаем его через дискриминант:
(D=b^-4ac=(-5)^-4times1times6=25-24=1)
Дискриминант больше нуля, следовательно, два корня, найдем их:
Возвращаемся в замену, подставим вместо переменной t полученные числа: (x^=3)
Чтобы решить такого вида уравнение, необходимо обе части уравнения занести под квадратный корень.
Получилось полное квадратное уравнение, решаем через дискриминант:
(D=b^-4ac=(-4)^-4times1times4=16-16=0)
Дискриминант равен нулю, следовательно, один корень, найдем его:
(t=frac=frac=2)
Возвращаемся в замену, подставим вместо переменной t полученное число:
Можно не во всех случаях делать замену. Рассмотрим пример.
Пример №3:
Решить биквадратное уравнение.
Выносим переменную x 2 за скобку,
Приравниваем каждый множитель к нулю
Делим всё уравнение на -4:
Чтобы решить (x^=4) такое уравнение, необходимо, обе части уравнения занести под квадратный корень.
(begin
&x^=4\
&x_=2\
&x_=-2\
end)
Пример №4:
Решите биквадратное уравнение.
(x^-16=0)
Возвращаемся в замену, подставим вместо переменной t полученное число:
(begin
&x^=4\
&x_=2\
&x_=-2
end)
Ответ: решения нет.
Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
Видео:Решение биквадратных уравнений. 8 класс.Скачать
Биквадратные уравнения
теория по математике 📈 уравнения
Уравнение вида ax 4 +bx 2 +c=0, где а≠0 число, называется биквадратным уравнением (приставка «би» означает «двойной»). Для решения такого уравнения применяют метод введения новой переменной, чтобы получить квадратное уравнение, решение которого легко выполняется.
Рассмотрим на примерах решение таких уравнений.
Пример №1. Решить уравнение:
В данном уравнении заменим х 2 на переменную, например а (букву для замены можно брать любую): х 2 =а. Степень данного уравнения при этом понизится на 2, получаем квадратное уравнение:
Решаем данное уравнение, например, по теореме Виета. Тогда:
Методом подбора получаем корни квадратного уравнения 9 и 16. Проверяем, что действительно 9+16=25, 916=144. Теперь переходим к нахождению корней биквадратного уравнения, которое дано по условию. Мы заменяли х 2 на а, поэтому подставляем вместо а полученные значения – это 9 и 16:
Теперь находим корни каждого из этих неполных квадратных уравнений: х 2 =9, отсюда уравнение имеет два корня ±3; х 2 =16, отсюда имеет еще два корня ±4. Следовательно, данное биквадратное уравнение имеет четыре корня: 3, -3, 4, -4.
Пример №2. Решить уравнение:
Заменим на переменную у: х 2 =у. Получим уравнение:
Найдем его корни: у1=–1, у2=4. Подставим корни вместо у и получим уравнения: х 2 =–1; х 2 =4. Видим, что первое неполное квадратное уравнение не имеет корней, а корни второго уравнения – это ±2. Значит, данное биквадратное уравнение имеет корни ±2.
Пример №3. Решить уравнение:
Выполним замену переменной: х 2 =у. Решим уравнение:
Подбором корни найти невозможно, поэтому через дискриминант получаем, что корней нет, так как дискриминант будет отрицательный. Значит и данное биквадратное уравнение тоже не имеет корней.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Биквадратные уравнения: решение уравнений, примеры
Содержание:
В самом начале напомним, что в математике принято называть уравнением. Уравнение представляет собой равенство, содержащее одну или более неизвестных величин. Решить уравнение означает найти значение неизвестной величины (или нескольких неизвестных) таким образом, чтобы их подстановка в исходное выражение давала истинное математическое равенство.
Далее подробно расскажем о биквадратных уравнениях и способах их решения. Небольшой урок по этой теме – основа, которая может оказаться неплохим подспорьем, в тот момент, когда настанет время сдавать тест по алгебре. Таким образом не приходя в школьный класс, вы сможете вполне уверенно находить решение любого биквадратного уравнения.
Видео:5 Лайфхаков Которые Помогут Решить Биквадратное УравнениеСкачать
Формула биквадратного уравнения
ax 4 +bx 2 +c = 0, где
a и b – числовые коэффициенты,
с – свободный член.
При этом коэффициент «a» не должен равняться нулю.
Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Решение биквадратных уравнений
Для полной ясности рассмотрим, как решается биквадратное уравнение на примерах.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Биквадратные уравнения: примеры для решения
Сначала выполним замену переменной x2 = t и запишем новое квадратное уравнение:
Находим дискриминант для квадратного уравнения по известной формуле:
D = b 2 – 4ac = (-5) 2 – 4 ∙ 1 ∙ 4 = 9.
Напомним о том, что в случае, когда дискриминант оказывается меньше нуля, то уравнение не будет иметь корней, а когда он равен нулю, то корень будет один.
Так как полученный дискриминант D>0, то уравнение будет иметь два корня, которые найдем по формулам: t1 = -b+D2a и -b-D2a.
Теперь задача состоит в подстановке найденных корней в формулу, по которой мы ранее изменили переменную:
x 2 = 1 и x 2 = 4.
Корни этих уравнений очевидны, но все-таки найдем их традиционным для математики способом. Для этого занесем обе части полученных равенств под знак квадратного корня:
x 2 = 1, тогда x1 = 1 и x2 = –1.
x 2 = 4, тогда x3 = 2 и x4 = –2.
Ответ. Таким образом мы получили четыре искомых корня биквадратного уравнения
Теперь рассмотрим другой пример, в котором корни биквадратного уравнения будем находить без вычисления дискриминанта. Задание будет состоять в решении уравнения:
В этом случае будет вполне логично вынести переменную x 2 за скобки, тогда получим выражение: x 2 (–9x 2 +81) = 0.
Теперь можно приравнять к нулю каждый из сомножителей уравнения.
x 2 = 0, соответственно один из корней нашего уравнения x1 = 0.
Второе равенство решаем следующим путем:
Заносим под знак радикала обе части полученного равенства
x 2 = 9, тогда x2 = 3 и x3 = –3.
Ответ. Получено три корня заданного биквадратного уравнения: x1 = 0, x2 = 3 и x3 = –3.
Таким образом на примерах из школьной программы мы продемонстрировали как решать биквадратные уравнения различными способами. Надеемся, что приведенная информация будет полезной при сдаче теста.
📹 Видео
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
Неполные квадратные уравнения. Алгебра, 8 классСкачать
Решение биквадратных уравнений. Практическая часть. 2ч. 8 класс.Скачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
СЛОЖИТЕ ДВА КОРНЯСкачать
Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать
Комплексные корни квадратного уравненияСкачать
897 Алгебра 8 класс При каких значениях уравнение имеет два отрицательных корня Квадратные уравненияСкачать
КВАДРАТНОЕ УРАВНЕНИЕ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Квадратное уравнение с параметром. Исследование корней квадратного уравнения. Алгебра 8 классСкачать
8 класс. Квадратное уравнение и его корни. Алгебра.Скачать