Коэффициенты для уравнения теплоемкости a b c

Интерполяционные уравнения, описывающие температурную зависимость теплоемкости

Модуль 2 Лекция 5

Понятие о теплоёмкости. Теории теплоёмкости газа и конденсированных тел. Методы её оценки на основе экспериментальных данных. Зависимость теплоёмкости от температуры. Зависимость теплового эффекта от температуры и давления. Формула Кирхгофа. Квантовая теория теплоемкости Эйнштейна и Дебая. Понятие о характеристической температуре и методы её оценки на основе экспериментальных данных. Экспериментальные методы исследования теплоёмкости.

Зависимость теплового эффекта реакции от температуры.
Закон Кирхгоффа

В общем случае тепловой эффект химической реакции зависит от температуры и давления, при которых проводится реакция. Влиянием давления на ΔН и ΔU реакции обычно пренебрегают. Влияние температуры на величины тепловых эффектов описывает закон Кирхгоффа:

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

· Температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции, т.е. равен разности сумм теплоемкостей продуктов реакции и сумм теплоемкостей исходных веществ..

Продифференцируем ΔН и ΔU по температуре при постоянных давлении и температуре соответственно:

Коэффициенты для уравнения теплоемкости a b c(5.1)

Коэффициенты для уравнения теплоемкости a b c(5.2)

Производные энтальпии и внутренней энергии системы по температуре есть теплоемкости системы в изобарных и изохорных условиях Cp и Cv соответственно:

Коэффициенты для уравнения теплоемкости a b c(5.3)

Коэффициенты для уравнения теплоемкости a b c(5.4)

Подставив выражения (5.3, 5.4) в (5.1, 5.2), получаем математическую запись закона Кирхгоффа:

Коэффициенты для уравнения теплоемкости a b c(5.5)

Коэффициенты для уравнения теплоемкости a b c(5.6)

Для химического процесса изменение теплоемкости задается изменением состава системы и рассчитывается следующим образом:

Коэффициенты для уравнения теплоемкости a b c(5.7)

Коэффициенты для уравнения теплоемкости a b c(5.8)

Если проинтегрировать выражения (5.5, 5.6) от Т = Т1 до Т = Т2, считая ΔСp (ΔСv) не зависящим от температуры, получим интегральную форму закона Кирхгоффа:

Коэффициенты для уравнения теплоемкости a b c(5.9)

Коэффициенты для уравнения теплоемкости a b c(5.10)

Видео:Химические уравнения 8 класс - как расставить коэффициенты ?Скачать

Химические уравнения 8 класс - как расставить коэффициенты ?

Поскольку обычно известны табличные значения стандартных тепловых эффектов ΔН°298 и ΔU°298, преобразуем выражения (5.9, 5.10):

Коэффициенты для уравнения теплоемкости a b c(5.11)

Коэффициенты для уравнения теплоемкости a b c(5.12)

При расчете изменения теплового эффекта реакции в большом интервале температур необходимо учитывать зависимость теплоёмкости от температуры, которая выражается степенным рядом

p = a + bT + c׳ T -2 (для неорганических соединений);

p = a + bT + cT 2 (для органических соединений);

коэффициенты a, b, c приведены в справочниках. Следует отметить, что если ΔCp > 0, то с увеличением температуры растет также и тепловой эффект, а если ΔCp

Коэффициенты для уравнения теплоемкости a b c(5.13)

Различают теплоемкость при постоянном давлении Cp (изобарную) и при постоянном объеме Cv (изохорную). Взаимосвязь этих теплоемкостей для идеальных газов определяется соотношением:

Видео:Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по ХимииСкачать

Расстановка Коэффициентов в Химических Реакциях // Подготовка к ЕГЭ по Химии

где R – универсальная газовая постоянная, равная 8,314 Дж/моль К.

Из кинетической теории газов вытекает, что внутренняя энергия (U) одноатомного идеального газа равна:

При повышении температуры одноатомного газа на 1 градус изохорная теплоемкость будет равна:

ΔU = UT+1 – U = 3/2 R (T + 1) – 3/2 RT = 3/2 R, (5.16)

а изобарная теплоемкость

Cp = Cv + R = 3/2 8,314 + 8,314 = 20,789 Дж/моль К. (5.17)

Видео:8 класс. Химия. Как расставить коэффициенты в уравнении?Скачать

8 класс. Химия. Как расставить коэффициенты в уравнении?

Изобарная и изохорная теплоемкости для твердых и жидких веществ достаточно близки, т.е. с повышением температуры изменение объема последних незначительно.

При расчете теплоемкости следует учитывать, что молекулы одноатомного газа имеют три степени свободы движения атомов в трехмерном пространстве, а двухатомного газа – пять степеней свободы: 3 степени поступательного движения и 2 – вращательного.

Это остается верным для любых линейных многоатомных молекул. Для нелинейных молекул трехатомного газа, а также для молекул более сложного строения, т.е. многоатомных, появляется еще одна степень свободы вращательного движения. Следует отметить, что на каждую степень свободы молекулы при поступательном и вращательном движениях приходится в пересчете на 1 моль газа энергия, равная ½ RT. Отсюда, принимая во внимание известное соотношение (5.15), можем найти теплоемкость при постоянном давлении Cp: для одноатомного газа она равна 5/2R или 20,8 Дж/моль К, а суммы поступательного и вращательного вкладов двухатомных и многоатомных линейных молекул в пересчете на моль идеального газа соответственно равны:

Cp = Cv + R = 5/2R + R = 29,1 Дж/моль К. (5.18)

Cp = Cv + R = 3R + R = 33,26 Дж/моль К. (5.19)

Однако, экспериментальные значения теплоемкости двухатомных и многоатомных газов отличаются от расчетных значений (5.18) и (5.19), т.к. имеют еще дополнительную колебательную составляющую; полное значение изобарной теплоемкости идеальных газов указанного типа выражается соотношением:

Видео:Основы теплотехники. Теплоёмкость газов и газовых смесей. Уравнение МайераСкачать

Основы теплотехники. Теплоёмкость газов и газовых смесей. Уравнение Майера

Природа колебательного вклада в теплоемкость в отличие от поступательного и вращательного значительно сложнее. (см. стр. 18 Пашинкин)

Правило Дюлонга-Пти Согласно этомк правилу атомная теплоемкость простых веществ в твердом состоянии (произведение атомной массы на его удельную теплоемкость) приблизительно одинакова для большинства элементов при комнатной температуре и равна (25,9 – 26,8) Дж/моль К. Однако, правило Дюлонга-Пти строго выполняется для каждого простого вещества лишь при температуре Дебая. Cp ≈ Cv ≈ 26,3 Дж/моль К.

Правило Неймана и Коппа По этому правилу мольная теплоемкость соединений в твердом состоянии приблизительно равна сумме атомных теплоемкостей элементов, входящих в состав данного соединения, если последние не слишком отличаются по своей химической природе.

Интерполяционные уравнения, описывающие температурную зависимость теплоемкости

Экспериментальные значения теплоемкостей индивидуальных веществ при температурах выше 200 К удобно выражать следующими эмпирическими формулами:

Ср = a + bT + cT 2 (5.22)

Видео:Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Ср = a + bT + cT -2 (5.23)

Коэффициенты, входящие в указанные уравнения, различны по значениям. При T = О коэффициент «а» не имеет смысла теплоемкости, а является лишь экстраполяционной постоянной. Уравнение (5.23) лучше передает зависимость Ср от Т при высоких температурах в связи с тем, что вклад третьего члена в общую сумму уменьшается. При этом зависимость Ср от Т становится почти линейной, а при сравнительно низких температурах (сТ -2 ) возрастает, и данная зависимость становится криволинейной, что согласуется с опытными данными. Поэтому небольшая экстраполяция в области высоких и низких температур не связана с большой погрешностью. А небольшая экстраполяция в случае уравнения (5.22 ) может привести к значительным отклонениям, так как при высоких температурах вклад члена сТ 2 в общую теплоемкость большая, что приводит к преувеличенным результатам, или (если С


источники:

💥 Видео

Количество теплоты, удельная теплоемкость вещества. 8 класс.Скачать

Количество теплоты, удельная теплоемкость вещества. 8 класс.

Расстановка коэффициентов в химических реакциях: как просто это сделатьСкачать

Расстановка коэффициентов в химических реакциях: как просто это сделать

Урок 112 (осн). Уравнение теплового балансаСкачать

Урок 112 (осн). Уравнение теплового баланса

Рассмотрение темы: "Теплоёмкость газов"Скачать

Рассмотрение темы: "Теплоёмкость газов"

Теплоемкость. Теплоемкость газа. Молярная теплоемкостьСкачать

Теплоемкость. Теплоемкость газа. Молярная теплоемкость

Количество теплоты, удельная теплоемкость вещества. Практическая часть - решение задачи. 8 класс.Скачать

Количество теплоты, удельная теплоемкость вещества. Практическая часть - решение задачи. 8 класс.

Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Количество теплоты | Физика 10 класс #40 | ИнфоурокСкачать

Количество теплоты | Физика 10 класс #40 | Инфоурок

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Урок 109 (осн). Задачи на вычисление количества теплотыСкачать

Урок 109 (осн). Задачи на вычисление количества теплоты

Теплоемкость газовСкачать

Теплоемкость газов

ДВИ по химии. Термохимия. Уравнение Аррениуса, закон Гесса, задачи на теплоемкостьСкачать

ДВИ по химии. Термохимия. Уравнение Аррениуса, закон Гесса, задачи на теплоемкость

Урок 176. Задачи на уравнение теплового балансаСкачать

Урок 176. Задачи на уравнение теплового баланса

Тепловой эффект хим. реакции. Энтальпия. Закон Гесса. Капучинка ^-^Скачать

Тепловой эффект хим. реакции. Энтальпия. Закон Гесса. Капучинка ^-^
Поделиться или сохранить к себе: