Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Уравнение Бернулли для реальной и идеальной жидкости

Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.

Коэффициент альфа в уравнении бернулли

График Бернулли и уравнение Бернулли для идеальной жидкости:

Коэффициент альфа в уравнении бернулли

График Бернулли и уравнение Бернулли для реальной жидкости:

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Смысл уравнения Бернулли

Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.

Коэффициент альфа в уравнении бернулли

Назначение уравнения Бернули

Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.

Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации

Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет — написано тут: Конструктор водяного отопления

Задача. Пример решения уравнения Бернулли

По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.

Коэффициент альфа в уравнении бернулли

Как понять уравнение Бернулли?

Коэффициент альфа в уравнении бернулли

Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве

Точка 1 – это место где известно давление

Точка 2 – это место где нужно узнать давление

Коэффициент альфа в уравнении бернулли

Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)

То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.

Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)

Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.

Сборка формулы уравнения Бернулли

Коэффициент альфа в уравнении бернулли

Как избавится от минуса?

Коэффициент альфа в уравнении бернулли

Как избавится от множителя (-1)?

Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Что такое идеальная жидкость?

Идеальная жидкость — это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.

Реальная жидкость — это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.

Формула Бернулли для реальной жидкости

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.

Потому что реальная жидкость движется не равномерно

Коэффициент альфа в уравнении бернулли

У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.

Формула коэффициента Кориолиса

Коэффициент альфа в уравнении бернулли

Что такое коэффициент Кориолиса?

Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.

Чему равен коэффициент Кориолиса?

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Нд.п. – Это динамические потери. Это потери вызванные движением воды.

Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Коэффициент альфа в уравнении бернулли

Посмотрите видеоурок по составлению уравнения Бернулли:

Как сделать гидравлический расчет погружного насоса?

Видео:Уравнение Бернулли Метод БернуллиСкачать

Уравнение Бернулли  Метод Бернулли

Уравнение Бернулли

Коэффициент альфа в уравнении бернулли

Уравнение Бернулли для струйки жидкости формулируется следующим образом: для элементарной струйки идеальной жидкости полная удельная энергия, т.е. сумма удельной энергии положения, удельной энергии давления и кинетической удельной энергии – есть величина постоянная во всех сечениях струйки.

Уравнение Бернулли выглядит так:

Коэффициент альфа в уравнении бернулли

Подробное описание всех входящих в состав уравнения параметров уже описан в этой статье.

Содержание статьи

Видео:10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Смысл уравнения Бернулли

По существу вывода уравнение Бернулли для струйки идеальной жидкости представляет собой закон сохранения механической энергии, составленный применительно к единице массового расхода жидкости. Это следует из того, что в процессе вывода значения работы сил, приложенных к выделенному объему струйки и значения кинетической энергии этого объема были поделены на величину ρqΔT.

Отсюда вытекает, что поскольку член υ 2 /2 является мерой кинетической энергии единицы массы движущейся жидкости, то сумма членов gz+p/ρ будет мерилом ее потенциальной энергии.

В отношении величины gz это очевидно, ведь если частица жидкости массы m расположена на высоте z относительно некоторой плоскости и находится под действием сил тяжести, то способность ее совершить работу, т.е. её потенциальная энергия относительно этой плоскости равняется mgz. Но если её поделить на массу частиц m, то эта часть потенциальной энергии даст величину gz.

Коэффициент альфа в уравнении бернулли

Для более ясного физического представления о том, что потенциальная энергия измеряется величиной p/ρ рассмотрим такую схему: пусть к трубе, заполненной жидкостью с избыточным давлением p, присоединен пьезометр, снабженный на входе в него краном.

Кран сначала закрыт, т.е. пьезометр свободен от жидкости, а элементарный объем жидкости ΔV массой ρ*ΔV перед краном находится под давлением p.

Если затем открыть кран, то жидкость в пьезометре поднимется на некоторую высоту, равную

Таким образом, единица массы, находящейся под давлением p, как бы несет в себе ещё заряд потенциальной энергии, определяемой величиной p/ρ.

В гидравлике для характеристики удельной энергии обычно используется понятие напор, под которым понимают энергию жидкости, отнесенную к единице силы тяжести, а не её массы. В соответствии с этим уравнение Бернулли записанное в начале этой статьи примет вид

Коэффициент альфа в уравнении бернулли

Такое уравнение Бернулли для элементарной струйки идеальной жидкости в другой форме, весьма удобно для гидравлических расчетов и может быть сформулировано следующим образом.

Для элементарной струйки идеальной жидкости полный напор, т.е. сумма геометрического, пьезометрического и скоростного напоров, есть величина постоянная во всех её сечениях.

Отсюда следует, что между напором и удельной энергией существует очень простая зависимость

где э – удельная энергия

Уравнение Бернулли для элементарной струйки реальной жидкости

Коэффициент альфа в уравнении бернулли

Если вместо идеальной жидкости рассматривать жидкость реальную, то уравнение Бернулли для реальной жидкости должно принять несколько другой вид.

При движении идеальной жидкости её полная удельная энергия или напор сохраняет постоянное значение по длине струйки, а при движении реальной жидкости эта энергия будет убывать по направлению движения. Причиной этого являются затраты энергии на преодоление сопротивлений движению, обусловленные внутренним трением в вязкой жидкости.

Если же мы рассмотрим два сечения для струйки идеальной жидкости: 1-1 в начале и 2-2 в конце струйки, то полная удельная энергия будет

Коэффициент альфа в уравнении бернулли

Полная удельная энергия для сечения 1-1 всегда будет больше, чем полная удельная энергия для сечения 2-2 на некоторую величину потерь, и уравнение Бернулли в этом случае получается

Коэффициент альфа в уравнении бернулли

Величина Э1-2 представляет собой меру энергии, потерянную единицей массы жидкости на преодоление сопротивлений при её движениями между указанными сечениями.

Соответствующий этой потере удельной энергии напор называют потерей напора между сечениями 1-1 и 2-2 и обозначают h1-2 . Поэтому уравнение Бернулли для элементарной струйки реальной жидкости можно представить в виде

Коэффициент альфа в уравнении бернулли

Уравнение Бернулли для потока реальной жидкости

Уравнение Бернулли для струйки реальной жидкости это еще только половина дела, ведь в при решении различных практических вопросов о движении жидкостей приходится иметь дело с потоками конечных размеров. Уравнение Бернулли в этом случае может быть получено, исходя из рассмотрения потока как совокупности множества элементарных струек.

Учитывая, что все струйки движутся с одной и той же средней скоростью форма записи уравнения Бернулли для потока идеальной жидкости становится идентичной его записи для элементарной струйки.

Коэффициент альфа в уравнении бернулли

В таком виде уравнение Бернулли обычно и применяется при решении практических задач для потоков однородной несжимаемой жидкости при установившемся движении, происходящем под действием одной силы тяжести.

Такое уравнение составляется для различных живых сечений потока, вблизи которых движение жидкости должно удовлетворять условиям медленно изменяющегося движения, хотя на пути между этими сечениями движение может и не удовлетворять указанным условиям.

Слагаемое h1-2 в этом уравнении показывает потери напора на преодоление сопротивлений движению жидкости. При этом в гидравлике различают два основных вида сопротивлений:
— hлп — линейные потери — сопротивления, проявляющиеся по всей длине потока, обусловленные силами трения частиц жидкости друг о друга и о стенки, ограничивающие поток.
— hмп — местные потери – местные сопротивления, обусловленные различного рода препятствиями, устанавливаемыми в потоке (задвижка, кран, колено), приводящими к изменениям величины или направления скорости течения жидкости

Поэтому полная потеря напора между двумя сечениями потока при наличии сопротивлений обоих видов будет

Видео по теме

Уравнение Бернулли подходит и для газов. Явление уменьшения давления при повышении скорости потока является основой работы различных приборов для измерения расхода. Закон Бернулли справедлив и для жидкостей вязкость которых равна нулю. При описании течения таких жидкостей используют уравнение Бернулли с добавлением слагаемых учитывающих потери на местные сопротивления.

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Гидродинамика. Уравнение Бернулли для потока реальной жидкости.

При трансформации закономерности Бернулли для идеальной жидкости к уравнению потока реальной жидкости требуется принимать во внимание неравномерность разделения скоростей по сечению потока и потери энергии жидкости на внутреннее трение, что объясняется вязкостью жидкости.

В реальной жидкости вязкость формирует сопротивление движению жидкости. Это вызывает появление дополнительных потерь напора (энергии потока).

Распределение скоростей элементарных струек в потоке обычно величины не определенные, для этого в уравнение Бернулли добавляют поправочный коэффициент α.

Коэффициент α принято называть коэффициентом кинетической энергии или коэффициентом Кориолиса. Он характеризует неравномерное распределение скоростей в живом сечении потока, и равняется соотношению кинетической энергии, рассчитанной по реальным скоростям сечения, к той же энергии, вычисленной по средней скорости в этом же сечении потока. Следовательно, указанный коэффициент применяется для преобразования результатов расчетов по средней скорости в соответствие с реальными скоростями.

При турбулентном типе (со значительным перемешиванием, выравнивающим скорости на всех участках потока) кинетическая энергия практически равна полученной через среднюю скорость. Среднее значение коэффициента α берем на промежутке 1,05 – 1,11.

При ламинарном типе (перемешивание отсутствует) неравномерность поля скоростей достаточно велика и кинетическая энергия в 2 раза больше, чем вычисленная по средней скорости, α = 2.

Формула Бернулли для двух сечений потока реальной жидкости записывают так:

Коэффициент альфа в уравнении бернулли.

Закономерность Бернулли для потока реальной жидкости с физической точки зрения демонстрирует уравнение энергетического баланса. Теряемая энергия трансформируется в тепловую.

🎥 Видео

Уравнение Бернулли гидравликаСкачать

Уравнение Бернулли гидравлика

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.Скачать

Вязкость. Ламинарное и турбулентное течения жидкостей. 10 класс.

Закон БернуллиСкачать

Закон Бернулли

Уравнение БернуллиСкачать

Уравнение Бернулли

Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)

Дистанционная работа 5 - иллюстрация уравнения БернуллиСкачать

Дистанционная работа 5 - иллюстрация уравнения Бернулли

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Уравнение Бернулли. Диаграмма Бернулли.Скачать

Уравнение Бернулли. Диаграмма Бернулли.

Уравнение Бернулли. Практическая часть. 10 класс.Скачать

Уравнение Бернулли. Практическая часть. 10 класс.

Уравнение Бернулли для потока жидкостиСкачать

Уравнение Бернулли для потока жидкости

Закон БернуллиСкачать

Закон Бернулли

Уравнение Бернулли и его приложения | Гидродинамика, ГидравликаСкачать

Уравнение Бернулли и его приложения | Гидродинамика, Гидравлика

Применение уравнения Бернулли | Без комментариевСкачать

Применение уравнения Бернулли | Без комментариев

Решение уравнения БернуллиСкачать

Решение уравнения Бернулли

Эффект Магнуса и уравнение БернуллиСкачать

Эффект Магнуса и уравнение Бернулли

Дифференциальные уравнения Бернулли| poporyadku.schoolСкачать

Дифференциальные уравнения Бернулли| poporyadku.school
Поделиться или сохранить к себе: