Кинематическое уравнение движения в векторной форме

Кинематическое уравнение движения в векторной форме

§ 12. Уравнения равномерного прямолинейного движения

1. Уравнение в векторной форме.

Знаем, что одна из основных задач механики заключается в нахождении положения точки в любой момент времени при движении. Знаем, что положение точки может быть определено радиус-вектором, и в любом движении конечный радиус-вектор имеет вид:

Кинематическое уравнение движения в векторной форме.

Кинематическое уравнение движения в векторной форме— задан, а Кинематическое уравнение движения в векторной форменаиболее просто находить в равномерном прямолинейном движении с помощью скорости и времени.

Кинематическое уравнение движения в векторной форме

Кинематическое уравнение движения в векторной форме— это и есть уравнение равномерного прямолинейного движения в векторной форме.

2. Уравнение в координатной форме.

Знаем, что векторы находят с помощью проекций на оси координат. Поэтому от векторного уравнения движения перейдём к проекциям векторных величин на оси координат.

Если Кинематическое уравнение движения в векторной форме, то:

Кинематическое уравнение движения в векторной форме.

Проекции радиусов равны соответствующим координатам. Поэтому:

Кинематическое уравнение движения в векторной форме.

Если траектория известна, то мы совмещаем траекторию с осью координат OX и пользуемся вместо трёх всего одним первым уравнением.

Кинематическое уравнение движения в векторной форме

Никакую часть этого материала ни в каких целях, включая образовательные и научные, нельзя без письменного разрешения владельца авторских прав дублировать в сети Интернет и воспроизводить в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая запись на магнитный или электронный носитель, вывод на печать, фотокопирование.

Видео:Физика - уравнения равноускоренного движенияСкачать

Физика - уравнения равноускоренного движения

Уравнение движения материальной точки

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Видео:Основные понятия и уравнения кинематики равноускоренного движения тела.Скачать

Основные понятия и уравнения кинематики равноускоренного движения тела.

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x , y , z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r , υ , φ ;
  • цилиндрическая система с координатами p , z , α ;
  • на полярной плоскости с параметрами r , φ .

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Видео:Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | ИнфоурокСкачать

Уравнение равномерного прямолинейного движения | Физика 10 класс #3 | Инфоурок

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению ( 1 ) определено, если имеется указанное положение в любой момент времени t . Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x ( t ) = x , y ( t ) = y , z ( t ) = z ( 2 ) .

Прямоугольные декартовы координаты x , y , z — это проекции радиус-вектора r ¯ , проведенного из начала координат. Очевидно, что длину и направление r ¯ можно найти из соотношений, где a , β , γ являются образованными радиус-вектором углами с координатными осями.

Равенства ( 2 ) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости О х у , тогда применимы полярные координаты r , φ , относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r = r ( t ) , φ = φ ( t ) ( 3 ) .

Кинематическое уравнение движения точки в криволинейных координатах q 1 , q 2 , q 3 , связанных с декартовыми преобразованиями вида x = x ( q 1 , q 2 , q 3 ) , y = y ( q 1 , q 2 , q 3 ) , z = z ( q 1 , q 2 , q 3 ) ( 4 ) , записывается как

q 1 = q 1 ( t ) , q 2 = q 2 ( t ) , q 3 = q 3 ( t ) ( 5 ) .

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями ( 2 ) , ( 5 ) . Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Дано уравнение движения материальной точки x = 0 , 4 t 2 . Произвести запись формулы зависимости υ x ( t ) , построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x = 0 , 4 t 2 , t = 4 c

Найти: υ x ( t ) , S — ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υ x = υ 0 x + a x t .

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x = x 0 + υ 0 x t + a x t 2 2 , x = 0 , 4 t 2 .

Очевидно, что x 0 = 0 , υ 0 x = 0 , a x = 0 , 8 м / с 2 .

После подстановки данных в уравнение:

Определим точки, изобразим график:

υ x = 0 , t = 0 , υ x = 4 , t = 5

Кинематическое уравнение движения в векторной форме

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

Видео:Урок 7. Механическое движение. Основные определения кинематики.Скачать

Урок 7. Механическое движение. Основные определения кинематики.

Механическое движение и его характеристики

теория по физике 🧲 кинематика

Механика — раздел физики, который изучает механическое движение физических тел и взаимодействие между ними.

Основная задача механики — определение положение тела в пространстве в любой момент времени.

Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение и его виды

По характеру движения точек тела выделяют три вида механического движения:

  • Поступательное. Это движение, при котором все точки тела движутся одинаково. Если через тело мысленно провести прямую, то после изменения положения этого тела в пространстве данная прямая останется параллельной самой себе.
  • Вращательное. Это движение, при котором все точки тела движутся, описывая окружности.
  • Колебательное. Это движение тела, которое повторяется точно или приблизительно через определенные интервалы времени. От вращательного движения его отличает то, что при колебаниях тело перемещается в двух взаимно противоположных направлениях.

По типу линии, вдоль которой движется тело, выделяют два вида движения:

  • Прямолинейное — тело движется по прямой линии.
  • Криволинейное — тело движется по кривой линии, в том числе замкнутой.

По скорости выделяют два вида движения:

  • Равномерное — скорость движущегося тела остается неизменной.
  • Неравномерное — скорость движущегося тела с течением времени меняется.

По ускорению выделяют три вида движения:

  • Равноускоренное — тело движется неравномерно с постоянным ускорением (положительным). Скорость увеличивается.
  • Равнозамедленное — тело движется неравномерно с постоянным замедлением (отрицательным ускорением). Скорость уменьшается.
  • Ускоренное — тело движется неравномерно с меняющимся ускорением. Скорость может, как увеличиваться, так и уменьшаться.

Что нужно для описания механического движения?

Для описания механического движения нужно выбрать, относительно какого тела оно будет рассматриваться. Движение одного и того же объекта относительно разных тел неодинаковое. К примеру, идущий человек относительно дерева движется с некоторой скоростью. Но относительно сумки, которую он держит в руках, он находится в состоянии покоя, так как расстояние между ними с течением времени не изменяется.

Решение основной задачи механики — определения положения тела в пространстве в любой момент времени — заключается в вычислении координат его точек. Чтобы вычислить координаты тела, нужно ввести систему координат и связать с ней тело отсчета. Также понадобится прибор для измерения времени. Все это вместе составляет систему отсчета.

Система отсчета — совокупность тела отсчета и связанных с ним системы координат и часов.

Тело отсчета — тело, относительно которого рассматривается движение.

Часы — прибор для отсчета времени. Время измеряется в секундах (с).

При описании движения тела важно учитывать его размеры, так как характер движения его отдельных точек может различаться. Но в рамках некоторых задач размер тела не влияет на результат решения. Тогда его можно считать пренебрежительно малым. Тогда тело рассматривают как движущуюся материальную точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях конкретной задачи. Допустимо принимать тело за точку, если оно движется поступательно или его размеры намного меньше расстояний, которые оно проходит.

Виды систем координат

В зависимости от характера движения тела для его описания выбирают одну из трех систем координат:

  • Одномерную. Используется, когда положение материальной точки можно задать только одной координатой x — M(x) . В этом случае тело движется прямолинейно.
  • Двумерную. Используется, когда положение материальной точки можно задать двумя координатами x и y — M(x,y). Тело в этом случае движения по плоскости.
  • Трехмерную. Используется, когда положение материальной точки можно задать тремя координатами x, y и z — M(x,y,z). Тело в этом случае изменяет положение в трехмерном пространстве.

Кинематическое уравнение движения в векторной форме

Способы описания механического движения

Описать механическое движение можно двумя способами:

Координатный способ

Кинематическое уравнение движения в векторной форме

Указать положение материальной точки в пространстве можно, используя трехмерную систему координат. Если эта точка движется, то ее координаты с течением времени меняются. Так как координаты точки зависят от времени, можно считать, что они являются функциями времени. Математически это записывается так:

Кинематическое уравнение движения в векторной форме

Эти уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме.

Векторный способ

Радиус-вектор точки — вектор, начало которого совпадает с началом системы координат, а конец — с положением этой точки.

Кинематическое уравнение движения в векторной форме

Указать положение точки в трехмерном пространстве также можно с помощью радиус-вектора. При движении точки радиус-вектор со временем изменяется. Он может менять направление и длину. Это значит, что радиус-вектор тоже можно принять за функцию времени. Математически это записывается так:

Кинематическое уравнение движения в векторной форме

Эта формула называется кинематическим уравнением движения точки, записанным в векторной форме.

Характеристики механического движения

Движение материальной точки характеризуют три физические величины:

Перемещение

Перемещение (вектор перемещения) — направленный отрезок, начало которого совпадает с начальным положением точки, а конец — с его конечным положением. Обозначается как S .

Перемещение точки определяется как изменение радиус-вектора. Это изменение обозначается как Δ r . С точки зрения геометрии вектор перемещения равен разности радиус-векторов, задающих конечное и начальное положение точки:

Кинематическое уравнение движения в векторной формеКинематическое уравнение движения в векторной форме

Траектория — линия, которую описывает тело во время движения.

Путь — длина траектории. Обозначается буквой s. Единица измерения — метры (м).

Путь есть функция времени:

Кинематическое уравнение движения в векторной форме

Модуль перемещения — длина вектора перемещения. Обозначается как |Δ r |. Единица измерения — метры (м).

Модуль перемещения необязательно должен совпадать с длиной пути.

Пример №1. Человек обошел круглое поле диаметром 1 км. Чему равны пройденный путь и перемещение, которое он совершил.

Путь равен длине окружности. Поэтому:

Кинематическое уравнение движения в векторной форме

Человек, обойдя круглое поле, вернулся в ту же точку. Поэтому его начальное положение совпадает с конечным. В этом случае человек совершил перемещение, равное нулю.

Пример №2. Точка движется по окружности радиусом 10 м. Чему равен путь, пройденный этой точкой, в момент, когда модуль перемещения равен диаметру окружности?

Диаметр — это отрезок, который соединяет две точки окружности и проходит через центр. Перемещение равно длине этого отрезка в случае, если один из концов этого отрезка является началом вектора перемещения, а другой — его концом. Траекторией движения в этом случае является дуга, равная половине окружности. А длина траектории есть путь:

Кинематическое уравнение движения в векторной форме

Скорость

Скорость — векторная физическая величина, характеризующая быстроту перемещения тела. Численно она равна отношению перемещения за малый промежуток времени к величине этого промежутка.

В физике скорость обозначается V . Математически скорость определяется формулой:

Кинематическое уравнение движения в векторной форме

Скорость характеризуется не только направлением вектора скорости, но и его модулем.

Модуль скорости — расстояние, пройденное точкой за единицу времени. Обозначается буквой V и измеряется в метрах в секунду (м/с).

Математическое определение модуля скорости:

Кинематическое уравнение движения в векторной форме

Величина скорости тела в данный момент времени есть первая производная от пройденного пути по времени:

Кинематическое уравнение движения в векторной форме

Ускорение

Ускорение — векторная физическая величина, которая характеризует быстроту изменения скорости тела. Численно она равна отношению изменения скорости за малый промежуток времени к величине этого промежутка.

В физике ускорение обозначается a . Математически оно определяется формулой:

Кинематическое уравнение движения в векторной форме

Модуль ускорения — численное изменение скорости в единицу времени. Обозначается буквой a. Единица измерения — метры в секунду в квадрате (м/с 2 ).

Математическое определение модуля скорости:

Кинематическое уравнение движения в векторной формеv — скорость тела в данный момент времени, v0— его скорость в начальный момент времени, t — время, в течение которого эта скорость менялась.

Ускорение тела есть первая производная от скорости или вторая производная от пройденного пути по времени:

Кинематическое уравнение движения в векторной форме

Проекция вектора перемещения на ось координат

Проекция вектора перемещения на ось — это скалярная величина, численно равная разности конечной и начальной координат.

Кинематическое уравнение движения в векторной форме

Проекция вектора на ось OX:

Кинематическое уравнение движения в векторной форме

Проекция вектора на ось OY:

Кинематическое уравнение движения в векторной форме

Знаки проекций перемещения

  • Проекция является положительной, если движение от начала проекции вектора к проекции конца происходит сонаправленно оси координат.
  • Проекция является отрицательной, если движение от начала проекции вектора к проекции конца направлено в сторону, противоположную направлению координатной оси.

Внимание!

Проекция вектора перемещения на ось считается нулевой, если вектор расположен перпендикулярно этой оси.

Модуль перемещения — длина вектора перемещения:

Кинематическое уравнение движения в векторной форме

Модуль перемещения измеряется в метрах (м).

Вместе с собственными проекциями модуль перемещения образует прямоугольный треугольник. Сам он является гипотенузой этого треугольника. Поэтому для его вычисления можно применить теорему Пифагора. Выглядит это так:

Кинематическое уравнение движения в векторной форме

Выразив проекции вектора перемещения через координаты, эта формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Кинематическое уравнение движения в векторной форме

Выражение проекций вектора перемещения через угол его наклона по отношению к координатным осям:

Кинематическое уравнение движения в векторной форме

Общий вид уравнений координат:

Кинематическое уравнение движения в векторной форме

Пример №3. Определить проекции вектора перемещения на ось OX, OY и вычислить его модуль.

Кинематическое уравнение движения в векторной форме

Определяем координаты начальной точки вектора:

Кинематическое уравнение движения в векторной форме

Определяем координаты конечной точки вектора:

Кинематическое уравнение движения в векторной форме

Проекция вектора перемещения на ось OX:

Кинематическое уравнение движения в векторной форме

Проекция вектора перемещения на ось OY:

Кинематическое уравнение движения в векторной форме

Применяем формулу для вычисления модуля вектора перемещения:

Кинематическое уравнение движения в векторной форме

Пример №4. Определить координаты конечной точки B вектора перемещения, если начальная точка A имеет координаты (–5;5). Учесть, что проекция перемещения на OX равна 10, а проекция перемещения на OY равна 5.

Извлекаем известные данные:

Кинематическое уравнение движения в векторной форме

Для определения координаты точки В понадобятся формулы:

Кинематическое уравнение движения в векторной форме

Выразим из них координаты конечного положения точки:

Кинематическое уравнение движения в векторной форме

Точка В имеет координаты (5; 10).

Алгоритм решения

  1. Записать исходные данные в определенной системе отсчета.
  2. Записать формулу ускорения.
  3. Выразить из формулы ускорения скорость.
  4. Найти искомую величину.

Решение

Записываем исходные данные:

  • Тело начинает двигаться из состояния покоя. Поэтому его начальная скорость v0 = 0 м/с.
  • Ускорение, с которым тело начинает движение, равно: a = 4 м/с 2 .
  • Время движения согласно условию задачи равно: t = 2 c.

Записываем формулу ускорения:

Кинематическое уравнение движения в векторной форме

Так как начальная скорость равна 0, эта формула принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Кинематическое уравнение движения в векторной форме

Отсюда скорость равна:

Подставляем имеющиеся данные и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

📸 Видео

Уравнение движенияСкачать

Уравнение движения

Повторение Кинематические уравненияСкачать

Повторение  Кинематические уравнения

Урок 12. Равномерное прямолинейное движениеСкачать

Урок 12. Равномерное прямолинейное движение

Траектория и уравнения движения точки. Задача 1Скачать

Траектория и уравнения движения точки. Задача 1

Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точкиСкачать

Кинематика материальной точки за 20 минут (кратко и доступно) Кинематика точки

Физика - перемещение, скорость и ускорение. Графики движения.Скачать

Физика - перемещение, скорость и ускорение. Графики движения.

Движение точки тела. Способы описания движения | Физика 10 класс #2 | ИнфоурокСкачать

Движение точки тела. Способы описания движения | Физика 10 класс #2 | Инфоурок

Равномерное прямолинейное движение - физика 9Скачать

Равномерное прямолинейное движение - физика 9

Кинематика за 8 минСкачать

Кинематика за 8 мин

Равноускоренное движение. Вывод формулСкачать

Равноускоренное движение. Вывод формул

Физика. 10 класс. Основные понятия и уравнения кинематики равноускоренного движения тела/07.09.2020/Скачать

Физика. 10 класс. Основные понятия и уравнения кинематики равноускоренного движения тела/07.09.2020/

Уравнение движения с постоянным ускорением | Физика 10 класс #6 | ИнфоурокСкачать

Уравнение движения с постоянным ускорением | Физика 10 класс #6 | Инфоурок

Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

ЕГЭ-1.3 . Кинематика. Уравнение равномерного прямолинейного движения в векторной форме.Скачать

ЕГЭ-1.3 . Кинематика. Уравнение равномерного прямолинейного движения в векторной форме.

Кинематика. Равномерное и равноускоренное движение. Урок 1Скачать

Кинематика. Равномерное и равноускоренное движение. Урок 1

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс
Поделиться или сохранить к себе: