Стерлитамакский филиал Башкирский государственный университет
NovaInfo58, с. 11-15
Опубликовано 25 января 2017
Раздел: Физико-математические науки
Просмотров за месяц: 113
CC BY-NC
Видео:3.2 Решение уравнений гиперболического типа методом характеристикСкачать

Аннотация
В статье рассматривается решение задачи Коши для уравнения гиперболического типа. Продемонстрировано решение данного уравнения методом характеристик.
Видео:Приведение ДУ 2 порядка в частных производных к каноническому видуСкачать

Ключевые слова
Видео:§31.1 Приведение уравнения кривой к каноническому видуСкачать

Текст научной работы
Многие задачи физики, в частности механики, приводят к исследованию дифференциальных уравнений в частных производных второго порядка. Так, например, при изучении различных видов волн: звуковых, электромагнитных и других колебательных явлений приходят к волновому уравнению
где u=u(x,y,z,t), a — скорость распространения волны в данной среде. В одномерном случае это уравнение примет вид
которое является уравнением вынужденных колебаний однородной струны [1, 12].
В одномерном случае рассмотрим уравнение струны [2, 26]:
Задача Коши: Найти решение u(x,y) данного уравнения, удовлетворяющее начальным условиям:
Задача Коши для уравнения струны является математической моделью физической задачи о колебаниях настолько большой струны, что влияние ее концов уже не сказывается на колебаниях других точек струны. По этой причине в этой задаче отсутствуют граничные условия.
Приведем уравнение (1) к каноническому виду. Для этого составим уравнение характеристик
где A=0, 2B=e y , C=-1. Вычислим D=B^2-AC=frac<e^>>0
. Следовательно, уравнение (1) является уравнением гиперболического типа.
Подставляя в уравнение характеристик наши значения, получим:
Видео:Видеоурок "Канонические уравнения прямой"Скачать

Приведение к каноническому виду линейных уравнений с частными производными второго порядка
Федеральное агентство по образованию
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Институт математики, экономики и информатики
Кафедра дифференциальных и интегральных уравнений
ПРИВЕДЕНИЕ К КАНОНИЧЕСКОМУ ВИДУ ЛИНЕЙНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ВТОРОГО ПОРЯДКА
Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными …………………………………………………………………………
1.1. Необходимый теоретический материал………………………..
1.2. Пример выполнения задачи1 (приведение к
каноническому виду уравнений гиперболического типа) .
1.3. Пример выполнения задачи 2 (приведение к
каноническому виду уравнений параболического типа)
1.4. Пример выполнения задачи 3 (приведение к
каноническому виду уравнений эллиптического типа) ..
1.5. Задачи для самостоятельного решения ………………….….
Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2.1. Необходимый теоретический материал …………………..
2.2. Пример выполнения задачи 4
2.3. Задачи для самостоятельного решения ……………………..
В настоящих методических указаниях изложен теоретический материал и на конкретных примерах разобрано приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными для уравнений гиперболического, эллиптического и параболического типов.
Методические указания предназначены для студентов математических специальностей очной и заочной формы обучения.
§1. Приведение к каноническому виду линейных уравнений с частными производными 2-го порядка с двумя независимыми переменными.
Задача. Определить тип уравнения

и привести его к каноническому виду.
1.1. Необходимый теоретический материал.
I. Тип уравнения (1) определяется знаком выражения 
· если 
· если 
· если 
Уравнение (1) будет являться уравнением гиперболического, эллиптического, параболического типа в области D, если оно гиперболично, эллиптично, параболично в каждой точке этой области.
Уравнение (1) может менять свой тип при переходе из одной точки (области) в другую. Например, уравнение 



II. Чтобы привести уравнение к канонического виду, необходимо:
1. Определить коэффициенты 
2. Вычислить выражение 
3. Сделать вывод о типе уравнения (1) (в зависимости от знака выражения 
4. Записать уравнение характеристик:

5. Решить уравнение (2). Для этого:
а) разрешить уравнение (2) как квадратное уравнение относительно dy:

б) найти общие интегралы уравнений (3) (характеристики уравнения (1)):
· 
в случае уравнения гиперболического типа;
· 
в случае уравнения параболического типа;
· 
в случае уравнения эллиптического типа.
6. Ввести новые (характеристические) переменные 

· в случае уравнения гиперболического типа в качестве 

· в случае уравнения параболического типа в качестве 





· в случае уравнения эллиптического типа в качестве 

7. Пересчитать все производные, входящие в уравнение (1), используя правило дифференцирования сложной функции:





8. Подставить найденные производные в исходное уравнение (1) и привести подобные слагаемые. В результате уравнение (1) примет один из следующих видов:
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

1.2. Пример выполнения задачи 1.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (9). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy: 



б) найдём общие интегралы уравнений (10) (характеристики уравнения (9)):
6. Введём характеристические переменные:
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (8) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на -100 (коэффициент при 
Ответ. Уравнение (8) является уравнением гиперболического типа на всей плоскости XOY. Канонический вид
где
1.3. Пример выполнения задачи 2.
Определить тип уравнения
и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (12). Для этого:
а) разрешаем уравнение (9) как квадратное уравнение относительно dy. Однако в этом случае левая часть уравнения является полным квадратом:


б) имеем только одно уравнение характеристик (13). Найдём его общий интеграл (уравнения параболического типа имеют только одно семейство вещественных характеристик):
6. Введём характеристические переменные: одну из переменных 
а в качестве 


7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (11) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Функцию, стоящую в правой части уравнения (11) необходимо также выразить через характеристические переменные.
После деления на 25 (коэффициент при 
Ответ. Уравнение (11) является уравнением параболического типа на всей плоскости XOY. Канонический вид
где
1.4. Пример выполнения задачи 3.
Определить тип уравнения

и привести его к каноническому виду.
1. Определим коэффициенты 
2. Вычислим выражение 

3. 
4. Запишем уравнение характеристик:

5. Решим уравнение (15). Для этого:
а) разрешаем уравнение (15) как квадратное уравнение относительно dy: 
б) уравнения (16) – это пара комплексно-сопряженных уравнений. Они имеют пару комплексно-сопряженных общих интегралов. (Уравнения эллиптического типа не имеют вещественных характеристик)

6. Введём характеристические переменные как вещественную и мнимую части одного из общих интегралов (17):
7. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (14) при соответствующих производных.
8. Собирая подобные слагаемые, получим:
Или после деления на 4 (коэффициент при 

Ответ. Уравнение (14) является уравнением эллиптического типа на всей плоскости XOY. Канонический вид
где
1.5. Задачи для самостоятельного решения.
Определить тип уравнения и привести его к каноническому виду.










Определить тип уравнения и привести его к каноническому виду.
Определить тип уравнения и привести его к каноническому виду.
§2. Упрощение группы младших производных
для уравнений второго порядка с постоянными коэффициентами
2. 1. Необходимый теоретический материал
В самом общем виде линейное уравнение с частными производными второго порядка с двумя независимыми переменными имеет вид

Преобразованием независимых переменных группа старших производных уравнения может быть упрощена. Уравнение (1) приводится к одному из следующих видов
· в случае уравнения гиперболического типа:

· в случае уравнения параболического типа:

· в случае уравнения эллиптического типа:

Если коэффициенты исходного уравнения постоянны, то для дальнейшего упрощения уравнения любого типа нужно сделать замену неизвестной функции

где 





Чтобы реализовать замену (14) в уравнениях (11), (12), (13), необходимо пересчитать все производные, входящие в эти уравнения по формулам

Подробно рассмотрим этот процесс на примере уравнения гиперболического типа, т. е. уравнения (11). Пересчитаем производные, входящие в это уравнение, используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (11). Собирая подобные слагаемые, получим

В уравнении (16) приравняем к нулю коэффициенты при 
Откуда 


где 
2.2. Пример выполнения задачи 4
к каноническому виду и упростить группу младших производных.
9. Определим коэффициенты 
10. Вычислим выражение 

11. 
12. Запишем уравнение характеристик:

5. Решим уравнение (18). Для этого:
а) разрешаем уравнение (18) как квадратное уравнение относительно dy: 

б) найдём общие интегралы уравнений (19) (характеристики уравнения (17)):
6. Введём характеристические переменные:
13. Пересчитаем производные, входящие в исходное уравнение.
Используя формулы (7), получим:
Здесь слева написаны коэффициенты уравнения (17) при соответствующих производных.
14. Собирая подобные слагаемые, получим:

Теперь с помощью замены неизвестной функции (14)
упростим группу младших производных.
Пересчитаем производные, входящие в уравнение (20), используя формулы (15).
Здесь слева расставлены соответствующие коэффициенты уравнения (20). Собирая подобные слагаемые, получим

В уравнении (21) приравняем к нулю коэффициенты при 
Откуда 


Ответ. Уравнение (20) является уравнением эллиптического типа на всей плоскости XOY. Его канонический вид

где 
2.3. Задачи для самостоятельного решения
Задача 4. Привести уравнения к каноническому виду и упростить группу младших производных.










💡 Видео
Поверхности второго порядкаСкачать

2. Приведение уравнений второго порядка к каноническому видуСкачать

Уравнения математической физики. Лекция 5: Уравнения гиперболического типа (I). Лектор Хохлов Н.А.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Аналитическая геометрия, 8 урок, Поверхности второго порядкаСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Приведение линейного уравнения в частных производных c постоянными коэфф--ми к каноническому виду.Скачать

Привести квадратичную форму к каноническому видуСкачать

Уравнения математической физики. Лекция 2: Уравнения параболического типа. Хохлов Н.А.Скачать

Дигамма-функция. Часть1. Функциональные уравненияСкачать

2.1. Метод характеристик. Задача Коши для гиперболического уравнения на плоскости.Скачать

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Метод Лагранжа. Приведение квадратичной формы к каноническому и нормальному видамСкачать
























































