Этот онлайн-калькулятор выводит уравнения прямой в параметрической и канонической формах по двум заданным точкам на этой прямой.
Этот калькулятор может пригодиться для решения задач, где нужно вывести уравнения прямой, проходящей через две точки с заданными координатами. Просто введите координаты первой и второй точек, и калькулятор выведет параметрические и канонические уравнения прямой. Как обычно, теорию и формулы вы найдете под калькулятором
- Онлайн калькулятор. Уравнение прямой проходящей через две точки
- Найти уравнение прямой
- Ввод данных в калькулятор для составления уравнения прямой
- Дополнительные возможности калькулятора для составления уравнения прямой
- Теория. Уравнение прямой.
- Уравнение прямой, проходящей через две точки онлайн
- Предупреждение
- Уравнение прямой, проходящей через две точки − примеры и решения
- 🔥 Видео
Видео:Написать канонические и параметрические уравнения прямой в пространствеСкачать
Онлайн калькулятор. Уравнение прямой проходящей через две точки
Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.
Видео:Каноническое уравнение прямой в пространстве. 11 класс.Скачать
Найти уравнение прямой
Выберите необходимую вам размерность:
Введите координаты точек.
Ввод данных в калькулятор для составления уравнения прямой
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для составления уравнения прямой
- Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.
Теория. Уравнение прямой.
Прямая — один из базовых элементов геометрии. Используя уравнения прямых можно существенно упростить решение многих задач.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Уравнение прямой, проходящей через две точки онлайн
С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать
Уравнение прямой, проходящей через две точки − примеры и решения
Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).
(1) |
Подставив координаты точек A и B в уравнение (1), получим:
(Здесь 0 в знаменателе не означает деление на 0).
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).
(2) |
Подставив координаты точек A и B в уравнение (2), получим:
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
🔥 Видео
Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать
Видеоурок "Параметрические уравнения прямой"Скачать
Видеоурок "Канонические уравнения прямой"Скачать
Параметрические уравнения прямойСкачать
Лекция 23. Виды уравнений прямой на плоскости.Скачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
11. Прямая в пространстве и ее уравненияСкачать
Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
9 класс, 7 урок, Уравнение прямойСкачать
Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
12. Уравнения прямой в пространстве Решение задачСкачать
Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Видеоурок "Общие уравнения прямой"Скачать