С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через данную точку и перпендикуляной данной плоскости. Дается подробное решение с пояснениями. Для построения уравнения прямой введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».
- Предупреждение
- Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости
- Каноническое уравнение прямой на плоскости: теория, примеры, решение задач
- Понятие канонического уравнения прямой
- Канонические уравнения прямой на плоскости с a x или a y , равными нулю
- Преобразование канонического уравнения прямой в другие виды уравнений
- Как решать задачи на составление канонических уравнений
- Каноническое и параметрическое уравнения прямой
- Прямая линия. Уравнение прямой.
- 📽️ Видео
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать
Уравнение прямой, проходящей через данную точку и перпендикулярной данной плоскости
Наша цель построить уравнение прямой, проходящей через данную точку M0 и перпендикулярной к данной плоскости Ax+By+Cz+D=0.
Общее уравнение плоскости имеет вид:
(1) |
где n(A,B,C)− называется нормальным вектором плоскости.
Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:
(2) |
Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .
Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональный плоскости (1) имеет следующий вид:
(3) |
Пример 1. Построить прямую, проходящую через точку M0(5, -4, 4) и перпендикулярной плоскости
Общее уравнение плоскости имеет вид (1), где :
(4) |
Подставляя координаты точки M0(5, -4, 4) и координаты нормального вектора плоскости (4) в (3), получим:
Видео:Уравнение прямой, проходящей через начало координатСкачать
Каноническое уравнение прямой на плоскости: теория, примеры, решение задач
Прямую линию в прямоугольной системе координат можно задать с помощью канонического уравнения. В этой статье мы расскажем, что это такое, приведем примеры, рассмотрим связи канонических уравнений с другими типами уравнений для этой прямой. В последнем пункте мы разберем несколько задач на закрепление темы.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Понятие канонического уравнения прямой
Допустим, что у нас есть декартова (прямоугольная) система координат, в которой задана прямая. Нам известны координаты произвольно взятой точки этой прямой M 1 ( x 1 , y 1 ) , а также ее направляющего вектора a → = ( a x , a y ) . Попробуем составить уравнение, которое описывало бы эту прямую.
Возьмем плавающую точку M ( x , y ) . Тогда вектор M 1 M → можно считать направляющим для исходной прямой. Его координаты будут равны x — x 1 , y — y 1 (если нужно, повторите материал о том, как правильно вычислять координаты вектора с помощью координат отдельных его точек).
Множество произвольно взятых точек M ( x , y ) будут определять нужную нам прямую с направляющим вектором a → = ( a x , a y ) только в одном случае – если векторы M 1 M → и a → = ( a x , a y ) будут коллинеарны по отношению друг к другу. Посмотрите на картинку:
Таким образом, мы можем сформулировать необходимое и достаточное коллинеарности этих двух векторов:
M 1 M → = λ · a → , λ ∈ R
Если преобразовать полученное равенство в координатную форму, то мы получим:
x — x 1 = λ · a x y — y 1 = λ · a y
При условии, что a x ≠ 0 и a y ≠ 0 , получим:
x — x 1 = λ · a x y — y 1 = λ · a y ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y
Итог наших преобразований и будет каноническим уравнением прямой на плоскости. Запись вида x — x 1 a x = y — y 1 a y также называют уравнением прямой в каноническом виде.
Таким образом, с помощью уравнения x — x 1 a x = y — y 1 a y можно задать в прямоугольной системе координат на плоскости прямую, которая имеет направляющий вектор a → = ( a x , a y ) и проходит через точку M 1 ( x 1 , y 1 ) .
Примером уравнения подобного типа является, например, x — 2 3 = y — 3 1 . Прямая, которая задана с его помощью, проходит через M 1 ( 2 , 3 ) и имеет направляющий вектор a → = 3 , 1 . Ее можно увидеть на рисунке:
Из определения канонического уравнения нужно сделать несколько важных выводов. Вот они:
1. Если прямая, имеющая направляющий вектор a → = ( a x , a y ) , проходит через две точки – M 1 ( x 1 , y 1 ) и M 2 ( x 2 , y 2 ) , то уравнение для нее может быть записано как в виде x — x 1 a x = y — y 1 a y , так и x — x 2 a x = y — y 2 a y .
2. Если заданная прямая имеет направляющий вектор с координатами a → = ( a x , a y ) , то множество всех ее векторов можно обозначить как μ · a → = ( μ · a x , μ · a y ) , μ ∈ R , μ ≠ 0 . Таким образом, любое уравнение прямой в каноническом виде x — x 1 μ · a x = y — y 1 μ · a y будет соответствовать этой прямой.
Разберем важный пример задачи на нахождение канонического уравнения.
В прямоугольной системе координат на плоскости задана прямая, которая проходит через точку M 1 ( 2 , — 4 ) и имеет направляющий вектор с координатами a → = ( 1 , — 3 ) . Запишите каноническое уравнение, описывающее данную прямую.
Решение
Для начала вспомним общий вид нужного нам канонического уравнения – x — x 1 a x = y — y 1 a y . Подставим в него имеющиеся значения x 1 = 2 , y 1 = — 4 , a x = 1 , a y = — 3 и подсчитаем:
x — x 1 a x = y — y 1 a y ⇔ x — 2 1 = y — ( — 4 ) — 3 ⇔ x — 2 1 = y + 4 — 3
Получившееся в итоге равенство и будет нужным ответом.
Ответ: x — 2 1 = y + 4 — 3
Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать
Канонические уравнения прямой на плоскости с a x или a y , равными нулю
Если значение хотя бы одной переменной a является нулевым, то уравнение плоскости используют в первоначальном виде. Сразу две переменные нулевыми не могут быть по определению, поскольку нулевой вектор не бывает направляющим. В таком случае мы можем считать запись x — x 1 a x = y — y 1 a y условной и понимать ее как равенство a y ( x — x 1 ) = a x ( y — y 1 ) .
Разберем случаи канонических уравнений на плоскости с одним нулевым a более подробно. Допустим, что x — x 1 0 = y — y 1 a y при a x = 0 , а исходная прямая будет проходить через M 1 ( x 1 , y 1 ) . В таком случае она является параллельной оси ординат (если x 1 = 0 , то она будет с ней совпадать). Докажем это утверждение.
Для этой прямой вектор a → = ( 0 , a y ) будет считаться направляющим. Этот вектор является коллинеарным по отношению к координатному вектору j → = ( 0 , 1 ) .
Если же нулевым является значение второго параметра, то есть a y = 0 , то мы получаем равенство вида x — x 1 a x = y — y 1 0 . Это уравнение описывает прямую, проходящую через M 1 ( x 1 , y 1 ) , которая расположена параллельно оси абсцисс. Это утверждение верно, поскольку a → = ( a x , 0 ) является для этой прямой направляющим вектором, а он в свою очередь является коллинеарным по отношению к координатному вектору i → = ( 1 , 0 ) .
Проиллюстрируем два частных случая канонического уравнения, описанные выше:
На плоскости задана прямая, параллельная оси O y . Известно, что она проходит через точку M 1 2 3 , — 1 7 . Запишите каноническое уравнение для нее.
Решение
Если прямая по отношению оси ординат является параллельной, то мы можем взять координатный вектор j → = ( 0 , 1 ) в качестве направляющего для нее. В таком случае искомое уравнение выглядит следующим образом:
x — 2 3 0 = y — — 1 7 1 ⇔ x — 2 3 0 = y + 1 7 1
Ответ: x — 2 3 0 = y + 1 7 1
На рисунке изображена прямая. Запишите ее каноническое уравнение.
Решение
Мы видим, что исходная прямая проходит параллельно оси O x через точку M 1 ( 0 , 3 ) . Мы берем координатный вектор i → = ( 1 , 0 ) в качестве направляющего. Теперь у нас есть все данные, чтобы записать нужное уравнение.
x — 0 1 = y — 3 0 ⇔ x 1 = y — 3 0
Ответ: x 1 = y — 3 0
Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать
Преобразование канонического уравнения прямой в другие виды уравнений
Мы уже выяснили, что в прямоугольной системе координат на плоскости заданную прямую можно описать с помощью канонического уравнения. Оно удобно для решения многих задач, однако иногда лучше производить вычисления с помощью другого типа уравнений. Сейчас мы покажем, как преобразовать каноническое уравнение в другие виды, если это требуется по ходу решения.
Стандартной форме записи канонического уравнения x — x 1 a x = y — y 1 a y можно поставить в соответствие систему параметрических уравнений на плоскости x = x 1 + a x · λ y = y 1 + a y · λ . Чтобы преобразовать один вид уравнения в другой, нам надо приравнять правую и левую часть исходного равенства к параметру λ . После этого надо выполнить разрешение получившихся равенств относительно переменных x и y :
x — x 1 a x = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y = λ ⇔ ⇔ x — x 1 a x = λ y — y 1 a y = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ
Покажем на примере, как именно выполняется это действие с конкретными числами.
У нас есть прямая, заданная на плоскости с помощью канонического уравнения x + 2 3 = y — 1 11 . Запишите параметрические уравнения исходной прямой.
Решение
Сначала поставим знак равенства между отдельными частями уравнения и переменной λ и получим x + 2 3 = λ y — 1 11 = λ .
Далее можно перейти к формулированию необходимых параметрических уравнений:
x + 2 3 = λ y — 1 11 = λ ⇔ x + 2 = 3 · λ y — 1 = 11 · λ ⇔ x = — 2 + 3 · λ y = 1 + 11 · λ
Ответ: x = — 2 + 3 · λ y = 1 + 11 · λ
Из канонического уравнения можно получить не только параметрические, но и общие уравнения прямой. Вспомним понятие пропорции: запись a b = c d можно представить в виде a · d = b · c с сохранением смысла. Значит, что x — x 1 a x = y — y 1 a y ⇔ a y ( x — x 1 ) = a x ( y — y 1 ) ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 .
Это и есть общее уравнение прямой. Это станет более очевидно, если мы добавим в него значения параметров a y = A , — a x = B , — a y x 1 + a x y 1 = C .
Прямая на плоскости описана с помощью канонического уравнения x — 1 2 = y + 4 0 . Вычислите общее уравнение этой прямой.
Решение
Делаем указанные выше действия по порядку.
x — 1 2 = y + 4 0 ⇔ 0 · ( x — 1 ) = 2 · ( y + 4 ) ⇔ y + 4 = 0
Ответ: y + 4 = 0 .
Также из канонического уравнения мы можем получить уравнение прямой в отрезках, прямой с угловым коэффициентом или нормальное уравнение прямой, но это действие выполняется в два шага: первым делом мы получаем общее уравнение прямой, а вторым – преобразуем его в уравнение указанного типа. Разберем пример такой задачи.
На плоскости задана прямая с помощью уравнения x + 3 3 = y — 2 2 . Запишите уравнение этой же прямой в отрезках.
Решение
Для начала преобразуем исходное каноническое уравнение в общее уравнение прямой.
x + 3 3 = y — 2 2 ⇔ 2 · ( x + 3 ) = 3 · ( y — 2 ) ⇔ 2 x — 3 y + 6 + 2 3 = 0
Далее переходим к формулировке уравнения прямой в отрезках.
2 x — 3 y + 6 + 2 3 = 0 ⇔ 2 x — 3 y = — 6 + 2 3 ⇔ ⇔ 2 — ( 6 + 2 3 ) x — 3 — ( 6 + 2 3 ) y = 1 ⇔ x — 6 + 2 3 2 + y 6 + 2 3 3 = 1 ⇔ x — 3 + 3 + y 3 3 + 2 = 1
Ответ: x — 3 + 3 + y 3 3 + 2 = 1
Достаточно легко решить и задачу, обратную этой, т.е. привести уравнение прямой на плоскости обратно к каноническому. Допустим, у нас есть общее уравнение прямой в стандартной формулировке – A x + B y + C = 0 . При условии A ≠ 0 мы можем перенести B y вправо с противоположным знаком. Получим A x + C = — B y . Теперь выносим A за скобки и преобразуем равенство так:
Получившееся уравнение мы записываем в виде пропорции: x + C A — B = y A .
У нас получилось нужное нам каноническое уравнение прямой на плоскости.
А как сделать преобразование, если B ≠ 0 ? Переносим все слагаемые, кроме A x , вправо с противоположными знаками. Получаем, что A x = — B y — C . Выносим — B за скобки:
Формируем пропорцию: x — B = y + C B A
Есть общее уравнение прямой x + 3 y — 1 = 0 . Перепишите его в каноническом виде.
Решение
Оставим с левой стороны только одну переменную x . Получим:
Теперь вынесем — 3 за скобки: x = — 3 y — 1 3 . Преобразуем равенство в пропорцию и получим необходимый ответ:
Ответ: x — 3 = y — 1 3 1
Таким же образом мы поступаем, если нам нужно привести к каноническому виду уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом.
Наиболее простая задача – переход от параметрических уравнений к каноническим. Нужно просто выразить параметр λ в системе уравнений x = x 1 + a x · λ y = y 1 + a y · λ и приравнять обе части равенств. Схема решения выглядит так:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ λ = x — x 1 a x λ = y — y 1 a y ⇔ x — x 1 a x = y — y 1 a y
Если значение одного из параметров a будет нулевым, мы поступаем точно таким же образом.
Прямая на плоскости описана с помощью системы параметрических уравнений x = 3 + 0 · λ y = — 2 — 4 · λ . Запишите каноническое уравнение для этой прямой.
Решение
Для начала преобразуем исходные уравнения в систему x = 3 + 0 · λ y = — 2 — 4 · λ . Следующим шагом будет выражение параметра в каждом уравнении:
x = 3 + 0 · λ y = — 2 — 4 · λ ⇔ λ = x — 3 0 λ = y + 2 — 4
Ставим знак равенства между получившимися частями и получаем нужное нам каноническое уравнение: x — 3 0 = y + 2 — 4
Ответ: x — 3 0 = y + 2 — 4
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Как решать задачи на составление канонических уравнений
В первую очередь канонические уравнения используются для тех задач, где нужно выяснить, принадлежит ли некоторая точка заданной прямой или нет. Вспомним, что в случае, если точка лежит на прямой, ее координаты будут удовлетворять уравнению этой прямой.
На плоскости задана прямая, каноническое уравнение которой имеет вид x — 1 2 = y + 1 2 — 3 . Выясните, лежат ли на ней точки M 1 3 , — 3 1 2 и M 2 ( 5 , — 4 ) .
Решение
Для проверки принадлежности необходимо подставить координаты точки в исходное уравнение и проверить, получим ли мы в итоге верное равенство.
3 — 1 2 = — 3 1 2 + 1 2 — 2 ⇔ 1 = 1
Результат говорит нам, что точка M 1 3 , — 3 1 2 принадлежит исходной прямой.
Точно так же поступим и с координатами второй точки:
5 — 1 2 = — 4 + 1 2 — 3 ⇔ 2 = 7 6
Получившееся в итоге равенство не является верным, значит, эта точка заданной прямой не принадлежит.
Ответ: первая точка лежит на заданной прямой, а вторая нет.
Есть две точки M 1 ( 2 , 4 ) и M 2 ( — 1 , 3 ) . Будет ли прямая, которая задана в той же плоскости с помощью уравнения x — 2 0 = y — 3 2 , проходить через них?
Решение
Вспомним, что запись x — 2 0 = y — 3 2 можно понимать как 2 · ( x — 2 ) = 0 · ( y — 3 ) ⇔ x — 2 = 0 . Подставим координаты заданных точек в это равенство и проверим.
Начнем с первой точки M 1 ( 2 , 4 ) : 2 — 2 = 0 ⇔ 0 = 0
Равенство верное, значит, эта точка расположена на заданной прямой.
Подставляем данные второй точки: — 1 — 2 = 0 ⇔ — 3 = 0 .
Равенство неверное, значит, точка M 2 ( — 1 , 3 ) не лежит на исходной прямой.
Ответ: через точку M 1 ( 2 , 4 ) прямая проходит, а через M 2 ( — 1 , 3 ) нет.
Далее мы посмотрим, какие еще типичные задачи на нахождение канонического уравнения можно встретить. Возьмем примеры с разными условиями.
Наиболее простыми являются задачи на нахождение канонического уравнения прямой на плоскости, в которых уже заданы координаты некой точки, лежащей на прямой. В первой части материала мы уже приводили пример решения такой задачи.
Чуть сложнее будет найти нужное уравнение, если нам предварительно нужно будет вычислить координаты направляющего вектора исходной прямой. Чаще всего встречаются задачи, в которой нужная прямая проходит через две точки с известными координатами.
Прямая на плоскости проходит через точку M 1 ( 0 , — 3 ) и через точку M 2 ( 2 , — 2 ) . Сформулируйте для этой прямой канонической уравнение.
Решение
Eсли у нас есть координаты двух точек, то мы можем вычислить по ним координаты вектора M 1 M 2 → = 2 , 1 . По отношению к прямой, чье уравнение мы составляем, он будет направляющим вектором. После этого мы можем записать следующее:
x — 0 2 = y — ( — 3 ) 1 ⇔ x 2 = y + 3 1
Также можно использовать координаты второй точки. Тогда мы получим: x — 2 2 = y — ( — 2 ) 1 ⇔ x — 2 2 = y + 2 1
Ответ: x 2 = y + 3 1
Посмотрим, как нужно составлять канонические уравнения прямой на плоскости в том случае, если направляющий вектор этой прямой нужно вычислять исходя из параллельных или перпендикулярных ей прямых.
Известно, что точка M 1 ( 1 , 3 ) принадлежит некоторой прямой, которая параллельна второй прямой, заданной с помощью уравнения x 2 = y — 5 . Запишите каноническое уравнение первой прямой.
Решение
Для первой прямой можно определить направляющий вектор a → = 2 , — 5 . Его можно рассматривать и в качестве направляющего для второй прямой, что следует из самого определения направляющих векторов. Это позволяет нам получить всю информацию, нужную для записи искомого уравнения: x — 1 2 = y — 3 — 5
Ответ: x — 1 2 = y — 3 — 5
Через точку M 1 ( — 1 , 6 ) проходит прямая, которая является перпендикулярной другой прямой, определенной на плоскости с помощью уравнения 2 x — 4 y — 7 = 0 . Запишите каноническое уравнение первой прямой.
Решение
Из данного уравнения мы можем взять координаты нормального вектора второй прямой – 2 , 4 . Мы знаем, что этот вектор является направляющим по отношению к первой. Тогда мы можем записать искомое уравнение:
x — ( — 1 ) 2 = y — 6 4 ⇔ x + 1 1 = y — 6 2
Видео:Видеоурок "Канонические уравнения прямой"Скачать
Каноническое и параметрическое уравнения прямой
Пусть l — некоторая прямая пространства. Как и в планиметрии, любой вектор
а =/= 0, коллинеарный прямой l, называется направляющим вектором этой прямой.
Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.
Пусть прямая l с направляющим вектором а проходит через точку M0 , а М — произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор (overrightarrow) коллинеарен вектору а, т. е.
Если точки М и M0 заданы своими радиус-векторами r и r0 (рис. 198) относительно некоторой точки О пространства, то (overrightarrow) = r — r0, и уравнение (1) принимает вид
Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром.
Пусть точка M0 прямой l и направляющий вектор а заданы своими координатами:
Тогда, если (х; у; z) — координаты произвольной точки М прямой l, то
и векторное уравнение (1) равносильно следующим трем уравнениям:
$$ begin x = x_0 + ta_1 \ y = y_0 + ta_2 \ z = z_0 + ta_3, ;;tin Rend (3)$$
Уравнения (3) называются параметрическими уравнениями прямой в пространстве.
Задача 1. Написать параметрические уравнения прямой, проходящей через точку
M0(-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).
В данном случае х0 = -3, у0 = 2, z0 = 4; а1 = 2; а2 = -5; а3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой
$$ begin x = -3 — 2t \ y = 2 — 5t \ z = 4 + 3t, ;;tin Rend $$
Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.
Пусть сначала все координаты отличны от нуля. Тогда
Эти уравнения называются каноническими уравнениями прямой.
Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.
Если в уравнениях (3) одна из координат вектора а, например а1 равна нулю, то, исключив параметр t, снова получим систему двух уравнений с тремя переменными х, у и z:
Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)
считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M0(х0; у0, z0) параллельно координатной плоскости yOz, так как этой плоскости параллелен ее направляющий вектор (0; а2; а3).
Наконец, если в уравнениях (3) две координаты вектора а, например а1 и а2 равны нулю, то эти уравнения принимают вид
Это уравнения прямой, проходящей через точку M0(х0; у0; z0) параллельно оси Oz. Для такой прямой х = х0, y = у0, a z — любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)
Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а1 , а2 , а3 не равен нулю, задает некоторую прямую пространства.
Задача 2. Написать канонические уравнения прямой, проходящей через точку M0(- 1; 1, 7) параллельно вектору а = (1; 2; 3).
Уравнения (4) в данном случае записываются слeдующим образом:
Выведем уравнения прямой, проходящей через две данные точки M1(х1; у1; z1) и
Это и есть уравнения прямой, проходящей через две точки M1(х1; у1; z1) и
Задача 3. Написать уравнения прямой, проходящей через точки M1(-4; 1; -3) и M2(-5; 0; 3).
Задача 4. Написать уравнения прямой, проходящей через точки M1(3; -2; 1) и
После подстановки координат точек M1 и M2 в уравнения (5) получим
Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать
Прямая линия. Уравнение прямой.
Свойства прямой в евклидовой геометрии.
Через любую точку можно провести бесконечно много прямых.
Через любые две несовпадающие точки можно провести единственную прямую.
Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются
параллельными (следует из предыдущего).
В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:
- прямые пересекаются;
- прямые параллельны;
- прямые скрещиваются.
Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия
задается на плоскости уравнением первой степени (линейное уравнение).
Общее уравнение прямой.
Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим
уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:
• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат
• А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох
• В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу
• В = С = 0, А ≠0 – прямая совпадает с осью Оу
• А = С = 0, В ≠0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных
Уравнение прямой по точке и вектору нормали.
Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)
перпендикулярен прямой , заданной уравнением
Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).
Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С
подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно
С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.
Уравнение прямой, проходящей через две точки.
Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,
проходящей через эти точки:
Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На
плоскости записанное выше уравнение прямой упрощается:
Дробь = k называется угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Решение. Применяя записанную выше формулу, получаем:
Уравнение прямой по точке и угловому коэффициенту.
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить , то полученное уравнение называется
уравнением прямой с угловым коэффициентом k.
Уравнение прямой по точке и направляющему вектору.
По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание
прямой через точку и направляющий вектор прямой.
Определение. Каждый ненулевой вектор (α1, α2), компоненты которого удовлетворяют условию
Аα1 + Вα2 = 0 называется направляющим вектором прямой.
Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).
Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,
коэффициенты должны удовлетворять условиям:
1 * A + (-1) * B = 0, т.е. А = В.
Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.
при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:
Уравнение прямой в отрезках.
Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:
или , где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения
прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.
С = 1, , а = -1, b = 1.
Нормальное уравнение прямой.
Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется
нормирующем множителем, то получим
xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.
Знак ± нормирующего множителя надо выбирать так, чтобы μ * С Что-то не нашли? Ошибка? Предложения? Сообщите нам
📽️ Видео
12. Уравнения прямой в пространстве Решение задачСкачать
10. Параллельность и перпендикулярность плоскостей Решение задачСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Написать канонические и параметрические уравнения прямой в пространствеСкачать
Уравнение прямой, проходящей через две точки, и прямой, перпендикулярной заданной прямойСкачать
Уравнение прямой проходящей через начало координат 7 - 8 клСкачать
Составляем уравнение прямой по точкамСкачать
Составить уравнение прямой, проходящей через две данные точки. Метод координат. Геометрия 9 классСкачать
Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать
9 класс, 7 урок, Уравнение прямойСкачать
11. Прямая в пространстве и ее уравненияСкачать
13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать