Парабола – одна из самых распространённых линий, и строить её придётся действительно часто. Поэтому отнеситесь к этому параграфу особо внимательно, поскольку я разберу типовые варианты расположения данной кривой.
! Примечание: как и с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но я ограничусь упрощённым вариантом изложения, чтобы у вас сложились элементарные представления об этих преобразованиях.
1) Поворот вокруг вершины. Если в уравнении присутствует знак «минус»: 


На следующем чертеже изображены графики парабол 



Таким образом, все параболы, с которыми мы обычно работаем – не каноничны!
Я очень хотел «уложить на бок» классическую параболу 




2) Параллельный перенос параболы. Без всякой оригинальности. Уравнение 



Соответствующее творческое задание для самостоятельного решения:
Задача 102
Построить параболу 
Как лучше действовать?
По условию требуется построить параболу 


Вторая часть задания предполагает приведение уравнения к каноническому виду. Проанализируйте равенство 

- Каноническое уравнение параболы
- Основные термины из канонического уравнения параболы
- Что из себя представляет каноническое уравнение параболы
- Готовые работы на аналогичную тему
- Вывод с помощью графика канонического уравнения для параболы
- Парабола, описываемая с помощью квадратичной функции
- Как составить уравнение параболы по имеющемуся графику
- Кривые второго порядка — определение и построение с примерами решения
- Эллипс
- Гипербола
- Кривые второго порядка на плоскости
- 🌟 Видео
Видео:§24 Каноническое уравнение параболыСкачать

Каноническое уравнение параболы
Вы будете перенаправлены на Автор24
Парабола — это кривая, образованная геометрическим множеством точек, находящихся на одинаковом расстоянии от некой точки $F$, называемой фокусом и не лежащей ни на этой кривой, ни на прямой $d$.
То есть отношение расстояний от произвольной точки на параболе до фокуса и от этой же точки до директрисы всегда равно единице, это отношение называется эксцентриситетом.
Термин “эксцентриситет” также используется для гипербол и эллипсов.
Видео:Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать

Основные термины из канонического уравнения параболы
Точка $F$ называется фокусом параболы, а прямая $d$ — её директрисой.
Осью симметрии параболы называется прямая, проходящая через вершину параболы $O$ и её фокус $F$, так, что она образует прямой угол с директрисой $d$.
Вершиной параболы называется точка, расстояние от которой до директрисы минимальное. Эта точка делит расстояние от фокуса до директрисы пополам.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Что из себя представляет каноническое уравнение параболы
Каноническое уравнение параболы довольно простое, его несложно запомнить и оно имеет следующий вид:
$y^2 = 2px$, где число $p$ должно быть больше нуля.
Число $p$ из уравнения носит название «фокальный параметр».
Данное уравнение параболы, вернее именно эта наиболее часто применяемая в высшей математике формула, применимо в том случае, когда ось параболы совпадает с осью $OX$, то есть парабола располагается как будто на боку.
Парабола, описанная уравнением $x^2 = 2py$ — это парабола, ось которой совпадает с осью $OY$, к таким параболам мы привыкли в школе.
А парабола, которая имеет минус перед второй частью уравнения ($y^2 = — 2px$), развёрнута на 180° по отношению к каноничной параболе.
Готовые работы на аналогичную тему
Парабола является частным случаем кривой 2-ого порядка, соответственно, в общем виде уравнение для параболы выглядит точно также как для всех таких кривых и подходит для всех случаев, а не только когда парабола параллельна $OX$.
При этом дискриминант, вычисляющийся по формуле $B^2 – 4AC$ равен нулю, а само уравнение выглядит так: $Ax^2 + B cdot x cdot y + Ccdot y^2 + Dcdot x + Ecdot y + F = 0$
Видео:§25 Исследование канонического уравнения параболыСкачать

Вывод с помощью графика канонического уравнения для параболы
Рисунок 1. График и вывод канонического уравнения параболы
Из определения, приведённого выше в данной статье, составим уравнение для параболы с верхушкой, расположенной на пересечении координатных осей.
Используя имеющийся график, определим по нему $x$ и $y$ точки $F$ из определения параболической кривой, данного выше, $x = frac
$ и $y = 0$.
Для начала составим уравнение для прямой $d$ и запишем его: $x = — frac
$.
Для произвольной точки M, лежащей на нашей кривой, согласно определению, справедливо следующее соотношение:
$FM$ = $ММ_d$ (1), где $М_d$ — точка пересечения перпендикуляра, опущенного из точки $M$ c директрисой $d$.
Икс и игрек для этой точки равны $frac
$ $y$ соответственно.
Запишем уравнение (1) в координатной форме:
Теперь для того чтобы избавиться от корня необходимо возвести обе части уравнения в квадрат:
После упрощения получаем каноническое уравнение параболы: $y^2 = px$.
Видео:Семинар №9 "Приведение уравнения второго порядка к каноническому виду"Скачать

Парабола, описываемая с помощью квадратичной функции
Уравнение, описывающее параболу с верхушкой, расположенной где угодно на графике и необязательно совпадающей с пересечением осей координат, выглядит так:
Чтобы вычислить $x$ и $y$ для вершины такой параболы, необходимо воспользоваться следующими формулами:
$y_A = — frac$, где $D = b^2 – 4ac$.
Пример составления классического уравнения параболы
Задача. Зная расположение фокусной точки, составить каноническое уравнение параболы. Координаты точки фокуса $F$ $(4; 0)$.
Так как мы рассматриваем параболу, график которой задан каноническим уравнением, то её вершина $O$ находится на пересечении осей икс и игрек, следовательно расстояние от фокуса до вершины равно $frac$ фокального параметра $frac
= 4$. Путём нехитрых вычислений получим, что сам фокальный параметр $p = 8$.
После подстановки значения $p$ в каноническую форму уравнения, наше уравнение примет вид $y^2 = 16x$.
Видео:Видеоурок "Парабола"Скачать

Как составить уравнение параболы по имеющемуся графику
Рисунок 2. Каноническое уравнение для параболы график и пример для решения
Для начала необходимо выбрать точку $М$, принадлежащую графику нашей функции, и, опустив из неё перпендикуляры на оси $OX$ и $OY$, записать её икс и игрек, в нашем случае точка $M$ это $(2;2)$.
Теперь нужно подставить полученные для этой точки $x$ и $y$ в каноническое уравнение параболы $y^2 = px$, получаем:
Сократив, получаем следующее уравнение параболы $y^2 = 2 cdot x$.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 03 12 2021
Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Кривые второго порядка — определение и построение с примерами решения
Содержание:
Геометрической фигурой или просто фигурой на плоскости называется множество точек. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными х и у записывается в виде
- Если точка М(а,Ь) принадлежит фигуре Ф, то координаты (а,Ь) являются решениями уравнения
- если пара чисел (c,d) является решением уравнения F(x,y) = 0, то точка N(c,d) принадлежит фигуре Ф.
Это определение в более компактной записи выглядит следующим образом. Уравнение 

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения 
Возможны два вида задач:
- дано уравнение
и надо построить фигуру Ф, уравнением которой является
;
- дана фигура Ф и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения 
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
- Задать фигуру геометрически, т.е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
- Записать в координатах условие, сформулированное в первом пункте.
Видео:Лекция 31.3. Кривые второго порядка. Парабола.Скачать

Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек 

Точки 
Если а =Ь, то уравнение (7.3) можно переписать в виде:

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку 

Число 


Фокальными радиусами точки М эллипса называются отрезки прямых, соединяющие эту точку с фокусами 







Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Видео:Как легко составить уравнение параболы из графикаСкачать

Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек 

Точки 



Тогда 




Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения 
Легко показать, что уравнение 

и сделаем параллельный перенос по формулам
В новых координатах преобразуемое уравнение примет вид: 

Пример:
Пусть заданы точка F и прямая у =-1 (рис. 9.8). Множество точек Р(х, y) для которых расстояние |PF| равно расстоянию




Видео:Как определить уравнение параболы по графику?Скачать

Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Число а называют большей полуосью эллипса, число 
шей полуосью эллипса, 2а и 2b — соответственно большей и меньшей осями эллипса. Точки 

Координатные оси являются осями симметрии эллипса, а начало координат — его центром симметрии. Центр симметрии эллипса называется центром эллипса.
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид 
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы 

Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:


Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке 

В новой системе координат координаты 
Переходя к старым координатам, получим:
Построим график эллипса.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
🌟 Видео
Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

§31.1 Приведение уравнения кривой к каноническому видуСкачать

Поворот и параллельный перенос координатных осей. ЭллипсСкачать

213. Фокус и директриса параболы.Скачать

Приведение кривой второго порядка к каноническому виду. ПримерСкачать

Каноническое уравнение параболыСкачать

Параболы. ПримерСкачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Видеоурок "Приведение к каноническому виду"Скачать




















