Каноническое уравнение общего перпендикуляра прямых

Уравнение прямой, проходящей через заданную точку перпендикулярно заданной прямой

В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.

Видео:Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой

Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.

Если плоскость α проходит через заданную точку М 1 перпендикулярно к заданной прямой b , то прямые, лежащие в этой плоскости, в том числе и проходящая через М 1 являются перпендикулярными заданной прямой b .

Каноническое уравнение общего перпендикуляра прямых

Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.

Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Если на плоскости с системой координат О х у z имеем прямую b , то ей соответствует уравнение прямой на плоскости, задается точка с координатами M 1 ( x 1 , y 1 ) , а необходимо составить уравнение прямой a , которая проходит через точку М 1 , причем перпендикулярно прямой b .

По условию имеем координаты точки М 1 . Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a , или координаты нормального вектора прямой a , или угловой коэффициент прямой a .

Необходимо получить данные из заданного уравнения прямой b . По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a . Отсюда получим, что угловые коэффициенты обозначаются как k b и k a . Они связаны при помощи соотношения k b · k a = — 1 .

Получили, что направляющий вектор прямой b имеет вид b → = ( b x , b y ) , отсюда нормальный вектор — n a → = ( A 2 , B 2 ) , где значения A 2 = b x , B 2 = b y . Тогда запишем общее уравнение прямой, проходящее через точку с координатами M 1 ( x 1 , y 1 ) , имеющее нормальный вектор n a → = ( A 2 , B 2 ) , имеющее вид A 2 · ( x — x 1 ) + B 2 · ( y — y 1 ) = 0 .

Нормальный вектор прямой b определен и имеет вид n b → = ( A 1 , B 1 ) , тогда направляющий вектор прямой a является вектором a → = ( a x , a y ) , где значения a x = A 1 , a y = B 1 . Значит осталось составить каноническое или параметрическое уравнение прямой a , проходящее через точку с координатами M 1 ( x 1 , y 1 ) с направляющим вектором a → = ( a x , a y ) , имеющее вид x — x 1 a x = y — y 1 a y или x = x 1 + a x · λ y = y 1 + a y · λ соответственно.

После нахождения углового коэффициента k b прямой b можно высчитать угловой коэффициент прямой a . Он будет равен — 1 k b . Отсюда следует, что можно записать уравнение прямой a , проходящей через M 1 ( x 1 , y 1 ) с угловым коэффициентом — 1 k b в виде y — y 1 = — 1 k b · ( x — x 1 ) .

Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Решение примеров

Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.

Записать уравнение прямой а, которая проходит через точку с координатами M 1 ( 7 , — 9 ) и перпендикулярна прямой b , которое задано каноническим уравнением прямой x — 2 3 = y + 4 1 .

Из условия имеем, что b → = ( 3 , 1 ) является направляющим вектором прямой x — 2 3 = y + 4 1 . Координаты вектора b → = 3 , 1 являются координатами нормального вектора прямой a , так как прямые a и b взаимно перпендикулярны. Значит, получаем n a → = ( 3 , 1 ) . Теперь необходимо записать уравнение прямой, проходящее через точку M 1 ( 7 , — 9 ) , имеющее нормальный вектор с координатами n a → = ( 3 , 1 ) .

Получим уравнение вида: 3 · ( x — 7 ) + 1 · ( y — ( — 9 ) ) = 0 ⇔ 3 x + y — 12 = 0

Полученное уравнение является искомым.

Ответ: 3 x + y — 12 = 0 .

Составить уравнение прямой, которая проходит через начало координат системы координат О х у z , перпендикулярно прямой 2 x — y + 1 = 0 .

Имеем, что n b → = ( 2 , — 1 ) является нормальным вектором заданной прямой. Отсюда a → = ( 2 , — 1 ) — координаты искомого направляющего вектора прямой.

Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a → = ( 2 , — 1 ) . Получим, что x — 0 2 = y + 0 — 1 ⇔ x 2 = y — 1 . Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2 x — y + 1 = 0 .

Ответ: x 2 = y — 1 .

Записать уравнение прямой, проходящей через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 .

Из уравнения y = — 5 2 x + 6 угловой коэффициент имеет значение — 5 2 . Угловой коэффициент прямой, которая перпендикулярна ей имеет значение — 1 — 5 2 = 2 5 . Отсюда делаем вывод, что прямая, проходящая через точку с координатами M 1 ( 5 , — 3 ) перпендикулярно прямой y = — 5 2 x + 6 , равна y — ( — 3 ) = 2 5 · x — 5 ⇔ y = 2 5 x — 5 .

Видео:Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.Скачать

Расстояние между скрещивающимися прямыми и уравнение их общего перпендикуляра.

Общий перпендикуляр к двум скрещивающимся прямым. Расстояние между скрещивающимися прямыми

Теорема. Пусть p1 и p2 – две произвольные скрещивающиеся прямые скрещивающиеся прямые . Если рассмотреть всевозможные прямые A1A2, такие, что точка A1 лежит на прямой p1, а точка A2 лежит на прямой p2, то будут выполнены следующие два утверждения:

  1. Среди всех прямых A1A2 существует единственная прямая, перпендикулярная к прямой p1 и к прямой p2 ( общий перпендикуляр к двум скрещивающимся прямым ).
  2. Среди всех отрезков A1A2наименьшую длину имеет отрезок общего перпендикуляра к двум скрещивающимся прямым.

Доказательство. Докажем сначала существование общего перпендикуляра к двум скрещивающимся прямым.

Через произвольную точку прямой p1 проведем прямую Каноническое уравнение общего перпендикуляра прямых, параллельную прямой параллельную прямой p2 , а через произвольную точку прямой p2 проведем прямую Каноническое уравнение общего перпендикуляра прямых, параллельную прямой параллельную прямой p1 . Обозначим буквой α плоскость, проходящую через прямые p1 и Каноническое уравнение общего перпендикуляра прямых, а буквой β плоскость, проходящую через прямые p2 и Каноническое уравнение общего перпендикуляра прямых(рис 1).

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Поскольку прямая p1 параллельна прямой Каноническое уравнение общего перпендикуляра прямых, лежащей на плоскости β , то по признаку параллельности прямой и плоскости прямая p1 параллельна плоскости β. Точно так же, поскольку прямая Каноническое уравнение общего перпендикуляра прямыхпараллельна прямой p2 , лежащей на плоскости β , то прямая Каноническое уравнение общего перпендикуляра прямыхпо признаку параллельности прямой и плоскости параллельна плоскости β. Таким образом, плоскость α содержит две пересекающиеся прямые p1 и Каноническое уравнение общего перпендикуляра прямых, паралельные плоскости β. В силу признака параллельности плоскостей заключаем, что плоскости α и β параллельны.

Спроектируем прямую p1 на плоскость β. Получим прямую Каноническое уравнение общего перпендикуляра прямых, являющуюся проекцией прямой проекцией прямой p1, и обозначим точку пересечения прямых p2 и Каноническое уравнение общего перпендикуляра прямыхбуквой B2 (рис. 2).

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Спроектируем теперь прямую p2 на плоскость α . Получим прямую Каноническое уравнение общего перпендикуляра прямых, являющуюся проекцией прямой проекцией прямой p2 , и обозначим точку пересечения прямых p1 и Каноническое уравнение общего перпендикуляра прямыхбуквой B1 (рис. 3).

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Доказательство существования общего перпендикуляра к двум скрещивающимся прямым завершено.

Докажем, что построенная прямая B1B2 является единственным общим перпендикуляром к прямым p1 и p2 .

Таким образом, общий перпендикуляр к прямым p1 и p2 является линией пересечения плоскостей γ и δ, то есть прямой B1B2 .

Доказательство единственности общего перпендикуляра к двум скрещивающимся прямым завершено. Утверждение 1 доказано.

Перейдем к доказательству утверждения 2. Для этого рассмотрим произвольный отрезок A1A2 , у которого конец A1 лежит на плоскости α , а конец A2 лежит на плоскости β . Опустим перпендикуляр из точки A1 на плоскость β и обозначим основание этого перпендикуляра символом A3 (рис. 4).

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Каноническое уравнение общего перпендикуляра прямых

Если отрезок A1A2 не является перпендикуляром к плоскостям α и β, то точка A3 не совпадет с точкой A2 , и треугольник A1A2A3 будет прямоугольным треугольником с гипотенузой A1A2 и катетом A1A3. Поскольку в прямоугольном треугольнике длина катета меньше длины гипотенузы, то

Видео:12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

Математический портал

Видео:Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве
  • Вы здесь:
  • Home

Каноническое уравнение общего перпендикуляра прямыхКаноническое уравнение общего перпендикуляра прямыхКаноническое уравнение общего перпендикуляра прямыхКаноническое уравнение общего перпендикуляра прямыхКаноническое уравнение общего перпендикуляра прямых

Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Расстояние между двумя скрещивающимися прямыми.

Пусть $L_1: frac=frac=frac$ и $L_2: frac=frac=frac$ — две скрещивающиеся прямые. Расстояние $rho(L_1, L_2)$ между прямыми $L_1$ и $L_2$ можно найти по следующей схеме:

1) Находим уравнение плоскости $P,$ проходящей через прямую $L_1,$ параллельно прямой $L_2:$Каноническое уравнение общего перпендикуляра прямых

Плоскость $P$ проходит через точку $M_1(x_1, y_1, z_1),$ перпендикулярно вектору $overline n=[overline s_1, overline s_2]=(n_x, n_y, n_z),$ где $overline s_1=(m_1, l_1, k_1)$ и $overline s_2=(m_2, l_2, k_2)$ — направляющие вектора прямых $L_1$ и $L_2.$ Следовательно, уравнение плоскости $P: n_x(x-x_1)+n_y(y-y_1)+n_z(z-z_1)=0.$

2) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_2$ до плоскости $P:$

Нахождение общего перпендикуляра скрещивающихся прямых.

Каноническое уравнение общего перпендикуляра прямых

Для нахождения общего перпендикуляра прямых $L_1$ и $L_2,$ необходимо найти уравнения
плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Пусть $P_1: A_1x+B_1y+C_1z+D_1=0;$

Тогда уравнение общего перпендикуляра имеет вид

Пример.

2.214.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Решение.

а) Если прямые $L_1$ и $L_2$ лежат в одной плоскости, то их направляющие вектора $overline(3, 4, -2),$ $overline(6, -4, -1),$ и вектор $overline l,$ соединяющий произвольную точку прямой $L_1$ и произвольную точку прямой $L_2$ компланарны. В качестве такого вектора $overline$ можно выбрать $overline(x_2-x_1, y_2-y_1, z_2-z_1).$ Проверим будут ли эти вектора компланарны.

Следовательно, вектора не компланарны и прямые не лежат в одной плоскости.

б) Запишем уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1.$ Эта плоскость проходит через точку $M_2(21, -5, 2)$ перпендикулярно вектору $overline n=[overline s_1, overline s_2].$

Таким образом, вектор $overline n$ имеет координаты $overline n(-12, -9, -36).$

Находим уравнение плоскости $$P:,, -12(x-21)-9(y+5)-36(z-2)=0Rightarrow$$ $$Rightarrow-12x-9y-36z+252-45+72=0Rightarrow -12x-9y-36z+279=0Rightarrow$$ $$Rightarrow 4x+3y+12z-93=0.$$

в) Расстояние между прямыми $L_1$ и $L_2$ равно расстоянию от любой точки прямой $L_1$ до плоскости $P:$

Ответ: $frac.$

г) Найдем уравнения плоскостей $P_1$ и $P_2,$ проходящих, соответственно, через прямые $L_1$ и $L_2,$ перпендикулярно плоскости $P.$

Имеем, $M_1=(-7, -4, -3)in P_1,$

Таким образом, $$P_1: 54(x+7)-44(y+4)-7(z+3)=54x-44y-7z+378-176-21=$$ $$=54x-44y-7z+181=0.$$

Аналогично находим $P_2:$

Имеем, $M_2=(21, -5, 2)in P_2,$

Таким образом, $$P_1: -45(x-21)-76(y+5)+34(z-2)=-45x-76y+34z+945-380-68=$$ $$=-45x-76y+34z+497=0.$$

Ответ: $left<begin54x-44y-7z+181=0;\ -45x-76y+34z+497=0.endright. $

2.215.

а) доказать, что прямые не лежат в одной плоскости, то есть являются скрещивающимися;

б) написать уравнение плоскости, проходящей через прямую $L_2$ параллельно $L_1;$

в) вычислить расстояние между прямыми;

г) написать уравнения общего перпендикуляра к прямым $L_1$ и $L_2.$

Ответ: б) $4x+12y+12z+76=0;$

г) $left<begin53x-7y-44z-429=0;\ 105x-23y-48z+136=0.endright. $

💡 Видео

Каноническое уравнение прямой в пространстве Преход от общего уравненияСкачать

Каноническое уравнение прямой в пространстве  Преход от общего уравнения

Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | ИнфоурокСкачать

Построение общего перпендикуляра к двум скрещивающимся прямым | Стереометрия #33 | Инфоурок

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

13. Общие уравнения прямой в пространстве / приведение к каноническому видуСкачать

13. Общие уравнения прямой в пространстве / приведение к каноническому виду

Видеоурок "Параметрические уравнения прямой"Скачать

Видеоурок "Параметрические уравнения прямой"

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

10. Параллельность и перпендикулярность плоскостей Решение задачСкачать

10. Параллельность и перпендикулярность плоскостей Решение задач

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

11. Прямая в пространстве и ее уравненияСкачать

11. Прямая в пространстве и ее уравнения

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой
Поделиться или сохранить к себе: