Каноническое уравнение гиперболы геометрический смысл его параметров

Гипербола, ее каноническое уравнение, свойства и параметры

Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r1 — r2| = 2a, откуда Каноническое уравнение гиперболы геометрический смысл его параметров Если обозначить b² = c² — a², отсюда можно получить

Каноническое уравнение гиперболы геометрический смысл его параметровканоническое уравнение гиперболы.

Эксцентриситетом гиперболы называется величина е = с / а. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

Каноническое уравнение гиперболы геометрический смысл его параметров и Каноническое уравнение гиперболы геометрический смысл его параметров.

3) Наряду с гиперболой можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

Каноническое уравнение гиперболы геометрический смысл его параметров ,

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Видео:§21 Каноническое уравнение гиперболыСкачать

§21 Каноническое уравнение гиперболы

Что такое гипербола

Каноническое уравнение гиперболы геометрический смысл его параметров

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Каноническое уравнение гиперболы геометрический смысл его параметров

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Каноническое уравнение гиперболы геометрический смысл его параметров

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Каноническое уравнение гиперболы геометрический смысл его параметров

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Каноническое уравнение гиперболы геометрический смысл его параметров
  • Выделяем квадраты в знаменателях:
    Каноническое уравнение гиперболы геометрический смысл его параметров
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Каноническое уравнение гиперболы геометрический смысл его параметров
    Каноническое уравнение гиперболы геометрический смысл его параметров

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Каноническое уравнение гиперболы геометрический смысл его параметров
      • Найдем асимптоты гиперболы. Вот так: Каноническое уравнение гиперболы геометрический смысл его параметров
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Каноническое уравнение гиперболы геометрический смысл его параметров

    на черновике выражаем:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Уравнение распадается на две функции:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    — определяет верхние дуги гиперболы (то, что ищем);

    Каноническое уравнение гиперболы геометрический смысл его параметров

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Каноническое уравнение гиперболы геометрический смысл его параметров

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Видео:Видеоурок "Гипербола"Скачать

    Видеоурок "Гипербола"

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Запишем это уравнение в координатной форме:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

    Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Каноническое уравнение гиперболы геометрический смысл его параметров

    На самом деле для фокуса F2 и директрисы d2 условие

    Каноническое уравнение гиперболы геометрический смысл его параметров

    можно записать в координатной форме так:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Видео:Лекция 14, 2021. Вывод уравнения эллипса и гиперболыСкачать

    Лекция 14,  2021. Вывод уравнения эллипса и гиперболы

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Каноническое уравнение гиперболы геометрический смысл его параметров

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Каноническое уравнение гиперболы геометрический смысл его параметров

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

    Лекция 31.2. Кривые второго порядка. Гипербола.

    Каноническое уравнение гиперболы

    Вы будете перенаправлены на Автор24

    Каноническое уравнение гиперболы имеет следующий вид: $frac — frac = 1$, где $a, b$ — положительные действительные числа.

    Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.

    Вывод канонического уравнения гиперболы

    Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы

    Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.

    Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.

    Рассмотрим произвольную точку $M$, принадлежащую гиперболе.

    Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.

    Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = sqrt$, а $r_2 = sqrt$.

    Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $sqrt — sqrt = ±2a$ (1).

    Умножим выражение (1) на $frac <$sqrt+ sqrt>$, получается:, получается:

    Сложим уравнения (1) и (2), получим:

    Возведём (3) в квадрат:

    $frac + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$

    $frac cdot x^2 – y^2 = c^2 – a^2$

    Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $fracx^2 – y^2 = b^2$

    Готовые работы на аналогичную тему

    Получаем уравнение: $frac — frac = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.

    Каноническое уравнение параболы и гиперболы немного похожи между собой.

    Уравнение параболы выглядит следующим образом:

    $y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.

    Каноническое уравнение гиперболы примеры решения

    Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.

    Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:

    Запишем знаменатели в виде степеней:

    Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.

    Видео:Гипербола и её касательнаяСкачать

    Гипербола и её касательная

    Построение гиперболы по каноническому уравнению

    Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.

    Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению

    Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±frac$. Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±frac<sqrt> cdot x$

    Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$. Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.

    Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы. Выразим $y$ из канонического уравнения нашей гиперболы:

    Найдём точки для положительной части гиперболы:

    при $x = 3, y =2.5$, а при $x = 3, y ≈3,87$.

    Теперь можно отложить все эти точки и построить график гиперболы.

    Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 30 11 2021

    🎦 Видео

    §23 Построение гиперболыСкачать

    §23 Построение гиперболы

    Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, параболаСкачать

    Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, парабола

    §29 Эксцентриситет гиперболыСкачать

    §29 Эксцентриситет гиперболы

    §18 Каноническое уравнение эллипсаСкачать

    §18 Каноническое уравнение эллипса

    Кривые второго порядка. ГиперболаСкачать

    Кривые второго порядка. Гипербола

    Лекция 31.1. Кривые второго порядка. ЭллипсСкачать

    Лекция 31.1. Кривые второго порядка. Эллипс

    Каноническое уравнение окружностиСкачать

    Каноническое уравнение окружности

    Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертежСкачать

    Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертеж

    §24 Каноническое уравнение параболыСкачать

    §24 Каноническое уравнение параболы

    Параметр. Серия 14. Решение задач с окружностями. Касание окружности и гиперболыСкачать

    Параметр. Серия 14. Решение задач с окружностями. Касание окружности и гиперболы
    Поделиться или сохранить к себе: