Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.
Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.
|r1 — r2| = 2a, откуда Если обозначить b² = c² — a², отсюда можно получить
— каноническое уравнение гиперболы.
Эксцентриситетом гиперболы называется величина е = с / а. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.
1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.
2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями
и .
3) Наряду с гиперболой можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением
,
для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.
4) Эксцентриситет гиперболы e > 1.
5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.
Видео:Видеоурок "Гипербола"Скачать
Параметры гиперболы; связь между ними.
Числа а и b называют вещественной и мнимой полуосями соответственно. Числа 2а и 2b – вещественной и мнимой осями.
Из определения b 2 следует, что b 2 =c 2 -a 2 , c 2 =a 2 +b 2
Если b=a, то гипербола называется равносторонней, прямоугольник гиперболы становится квадратом и его диагонали, т.е. асимптоты гиперболы, перпендикулярны. В этом случае их можно принять за новые оси координат. В результате получится «школьная» гипербола.
Эксцентриситет гиперболы. Оптическое свойство гиперболы
Эксцентриситетом гиперболы называют величину, равную отношению расстояния между фокусами к большей оси гиперболы.
E=√(1+b 2 /a 2 ), E 2 =1+b 2 /a 2 , b 2 /a 2 =E 2 -1, b/a=√(E 2 -1)
Если Е=1, то это означает, что c=a, b=0. В этом случае гипербола вырождается в отрезок на прямой Ox (-∞,-a] и [a,+ ∞).
Если E=∞, b/aè∞. Гипербола превращается в две прямые, перпендикулярные оси Ox и проходящие через вершины действительной оси гиперболы.
Если E=√2, то a=b, гипербола называется равносторонней, прямоугольник гиперболы вырождается в квадрат, асимптоты взаимно перпендикулярны.
Оптическое свойство гиперболы: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Параметрическое уравнение гиперболы
a 2 ch 2 (t)/a 2 -b 2 ch 2 (t)/b 2 =1, ch 2 (t)-sh 2 (t)=1 – основное гиперболическое тождество
В этой записи x≥a, поэтому эти параметрические уравнения описывают правую ветвь гиперболы. Левую ветвь описывает система:
Сопряженная гипербола; связь между параметрами
Уравнение сопряженной гиперболы:
-x 2 /a 2 +y 2 /b 2 =1
Фокусы гиперболы располагаются на мнимой оси. (рисунок)
E=c/b, E=√(1+(a/b) 2 ), a/b=√(E 2 -1)
y=±b/a *x – уравнение асимптот сопряженной гиперболы.
Определение и вывод канонического уравнения параболы. Параметры параболы
Параболой называют множество точек плоскости, равноудаленных от фиксированной точки, называемой фокусом и фиксированной прямой, называемой директрисой.
Для вывода канонического уравнения параболы нужно построить специальную систему координат:
1. построить прямую, проходящую через F перпендикулярно директрисе и направить её от директрисы к F.
2. OF=P/2. P — параметр параболы, O – начало координат.
Точка фокуса параболы имеет координаты F (p/2, 0).
Уравнение директрисы: x=-p/2.
Точка M (x, y) принадлежит параболе, если расстояние d1 от директрисы до точки M равно расстоянию d2 от фокуса до точки M.
d1=x+p/2, d2=√((x-p/2) 2 +y 2 )
(x+p/2) 2 =(x-p/2) 2 +y 2
x 2 -px+p 2 /4+y 2 =x 2 +px+p 2 /4
y 2 =2px – каноническое уравнение параболы. Число 2P называют раствор параболы.
Очевидно, если (x0, y0) принадлежит параболе, то и (x0, -y0), симметричная ей относительно оси Ox, так же принадлежит параболе.
Поэтому парабола имеет одну ось симметрии (Ox), одну вершину – О, один фокус F (p/2, 0) и одну директрису — x=-p/2.
Параметрических уравнений у параболы нет.
Оптическое свойство параболы
Пусть из фокуса луч выпущен на параболу. Отраженный луч пройдет параллельно оси Ох.
Если из фокуса на параболу выпущен пучок лучей, то они отразятся и пройдут параллельно Ох. Если на параболу направить пучок лучей, то после отражения они попадут в точку фокуса.
Первый факт используется в осветительных приборах.
Параллельный перенос системы координат
Пусть в пространстве дана система координат XYZ и другая система координат X1Y1Z1 с соответственно параллельными и одинаково направленными осями. Пусть дана точка M (x, y, z) в данной системе координат и (x1, y1, z1) в новой. О (x0, y0, z0) – начало координат в старой системе.
Построим векторы ОМ, О1М и ОО1. Координаты точки М являются проекциями её радиус вектора, поэтому вектор ОМ совпадает с координатами в старой системе. ОО1 совпадает с координатами О1 в старой системе координат. Заметим, что проекции вектора на параллельные и одинаково направленные оси равны.
ОО1 + О1М=OM, значит это векторное равенство равносильно трем скалярным для одноименных координат:
Найдем старые координаты через новые:
Приведение уравнения кривой второго порядка к каноническому виду
Пусть уравнение кривой второго порядка не содержит, А 2 +С 2 >0
Ax 2 +Cy 2 +Dx+Ey+F=0
Выделяя полные квадраты, приведем его либо к уравнению одного из следующих видов:
(x-x0) 2 /a 2 +(y-y0) 2 /b 2 =1
(x-x0) 2 /a 2 -(y-y0) 2 /b 2 =1
-(x-x0) 2 /a 2 +(y-y0) 2 /b 2 =1
Или будет какой-нибудь частный случай.
Введем новую систему координат:
И получим систему с центром в точке O1. Тогда в новой системе координат уравнение кривой будет каноническим.
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать
Что такое гипербола
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:§21 Каноническое уравнение гиперболыСкачать
Понятие гиперболы
Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.
Каноническое уравнение гиперболы в алгебре выглядит так:
, где a и b — положительные действительные числа.
Кстати, канонический значит принятый за образец.
В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.
Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.
Вспомним особенности математической гиперболы:
- Две симметричные ветви.
- Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.
Если гипербола задана каноническим уравнением, то асимптоты можно найти так:
Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.
Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.
Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:
Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.
Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.
- Произведем сокращение при помощи трехэтажной дроби:
- Воспользуемся каноническим уравнением
- Найдем асимптоты гиперболы. Вот так:
Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты. - Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).
- Найдем асимптоты гиперболы. Вот так:
Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.
Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).
Найдем дополнительные точки — хватит двух-трех.
В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.
Способ такой же, как при построении эллипса. Из полученного канонического уравнения
на черновике выражаем:
Уравнение распадается на две функции:
— определяет верхние дуги гиперболы (то, что ищем);
— определяет нижние дуги гиперболы.
Далее найдем точки с абсциссами x = 3, x = 4:
Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.
Действительная ось гиперболы — отрезок А1А2.
Расстояние между вершинами — длина |A1A2| = 2a.
Действительная полуось гиперболы — число a = |OA1| = |OA2|.
Мнимая полуось гиперболы — число b.
В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.
Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать
Форма гиперболы
Повторим основные термины и узнаем, какие у гиперболы бывают формы.
Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.
Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.
Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.
Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.
Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.
Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.
Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Видео:Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать
Фокальное свойство гиперболы
Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).
Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.
Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .
Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:
Рассмотрим, как это выглядит на прямоугольной системе координат:
- пусть центр O гиперболы будет началом системы координат;
- прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
- прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).
Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:
Запишем это уравнение в координатной форме:
Избавимся от иррациональности и придем к каноническому уравнению гиперболы:
, т.е. выбранная система координат является канонической.
Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Директориальное свойство гиперболы
Директрисы гиперболы — это две прямые, которые проходят параллельно оси.
ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.
Директориальное свойство гиперболы звучит так:
Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.
Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.
На самом деле для фокуса F2 и директрисы d2 условие
можно записать в координатной форме так:
Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:
Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать
Построение гиперболы
Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.
Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.
В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:
Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:
Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.
По определению эксцентриситет гиперболы равен
Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.
Так как b^2 = c^2 — a^2, то величина b изменится.
При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).
При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.
При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.
Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.
Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2
Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.
🔍 Видео
Видеоурок "Канонические уравнения прямой"Скачать
Видеоурок "Параметрические уравнения прямой"Скачать
Кривые второго порядка. ГиперболаСкачать
Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Каноническое уравнение прямой в пространстве. 11 класс.Скачать
Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертежСкачать
§23 Построение гиперболыСкачать
§29 Эксцентриситет гиперболыСкачать
Определить тип кривой (гипербола)Скачать
Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать
§31.1 Приведение уравнения кривой к каноническому видуСкачать
Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать
Лекция 23. Виды уравнений прямой на плоскости.Скачать