Каноническое и параметрическое уравнение гиперболы

Гипербола, ее каноническое уравнение, свойства и параметры

Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r1 — r2| = 2a, откуда Каноническое и параметрическое уравнение гиперболы Если обозначить b² = c² — a², отсюда можно получить

Каноническое и параметрическое уравнение гиперболыканоническое уравнение гиперболы.

Эксцентриситетом гиперболы называется величина е = с / а. Директрисой Di гиперболы, отвечающей фокусу Fi, называется прямая, расположенная в одной полуплоскости с Fi относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

Каноническое и параметрическое уравнение гиперболы и Каноническое и параметрическое уравнение гиперболы.

3) Наряду с гиперболой можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

Каноническое и параметрическое уравнение гиперболы ,

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Параметры гиперболы; связь между ними.

Числа а и b называют вещественной и мнимой полуосями соответственно. Числа 2а и 2b – вещественной и мнимой осями.

Из определения b 2 следует, что b 2 =c 2 -a 2 , c 2 =a 2 +b 2

Если b=a, то гипербола называется равносторонней, прямоугольник гиперболы становится квадратом и его диагонали, т.е. асимптоты гиперболы, перпендикулярны. В этом случае их можно принять за новые оси координат. В результате получится «школьная» гипербола.

Эксцентриситет гиперболы. Оптическое свойство гиперболы

Эксцентриситетом гиперболы называют величину, равную отношению расстояния между фокусами к большей оси гиперболы.

E=√(1+b 2 /a 2 ), E 2 =1+b 2 /a 2 , b 2 /a 2 =E 2 -1, b/a=√(E 2 -1)

Если Е=1, то это означает, что c=a, b=0. В этом случае гипербола вырождается в отрезок на прямой Ox (-∞,-a] и [a,+ ∞).

Если E=∞, b/aè∞. Гипербола превращается в две прямые, перпендикулярные оси Ox и проходящие через вершины действительной оси гиперболы.

Если E=√2, то a=b, гипербола называется равносторонней, прямоугольник гиперболы вырождается в квадрат, асимптоты взаимно перпендикулярны.

Оптическое свойство гиперболы: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.

Параметрическое уравнение гиперболы

a 2 ch 2 (t)/a 2 -b 2 ch 2 (t)/b 2 =1, ch 2 (t)-sh 2 (t)=1 – основное гиперболическое тождество

В этой записи x≥a, поэтому эти параметрические уравнения описывают правую ветвь гиперболы. Левую ветвь описывает система:

Сопряженная гипербола; связь между параметрами

Уравнение сопряженной гиперболы:

-x 2 /a 2 +y 2 /b 2 =1

Фокусы гиперболы располагаются на мнимой оси. (рисунок)

E=c/b, E=√(1+(a/b) 2 ), a/b=√(E 2 -1)

y=±b/a *x – уравнение асимптот сопряженной гиперболы.

Определение и вывод канонического уравнения параболы. Параметры параболы

Параболой называют множество точек плоскости, равноудаленных от фиксированной точки, называемой фокусом и фиксированной прямой, называемой директрисой.

Для вывода канонического уравнения параболы нужно построить специальную систему координат:

1. построить прямую, проходящую через F перпендикулярно директрисе и направить её от директрисы к F.

2. OF=P/2. P — параметр параболы, O – начало координат.

Точка фокуса параболы имеет координаты F (p/2, 0).

Уравнение директрисы: x=-p/2.

Точка M (x, y) принадлежит параболе, если расстояние d1 от директрисы до точки M равно расстоянию d2 от фокуса до точки M.

d1=x+p/2, d2=√((x-p/2) 2 +y 2 )

(x+p/2) 2 =(x-p/2) 2 +y 2

x 2 -px+p 2 /4+y 2 =x 2 +px+p 2 /4

y 2 =2px – каноническое уравнение параболы. Число 2P называют раствор параболы.

Очевидно, если (x0, y0) принадлежит параболе, то и (x0, -y0), симметричная ей относительно оси Ox, так же принадлежит параболе.

Поэтому парабола имеет одну ось симметрии (Ox), одну вершину – О, один фокус F (p/2, 0) и одну директрису — x=-p/2.

Параметрических уравнений у параболы нет.

Оптическое свойство параболы

Пусть из фокуса луч выпущен на параболу. Отраженный луч пройдет параллельно оси Ох.

Если из фокуса на параболу выпущен пучок лучей, то они отразятся и пройдут параллельно Ох. Если на параболу направить пучок лучей, то после отражения они попадут в точку фокуса.

Первый факт используется в осветительных приборах.

Параллельный перенос системы координат

Пусть в пространстве дана система координат XYZ и другая система координат X1Y1Z1 с соответственно параллельными и одинаково направленными осями. Пусть дана точка M (x, y, z) в данной системе координат и (x1, y1, z1) в новой. О (x0, y0, z0) – начало координат в старой системе.

Построим векторы ОМ, О1М и ОО1. Координаты точки М являются проекциями её радиус вектора, поэтому вектор ОМ совпадает с координатами в старой системе. ОО1 совпадает с координатами О1 в старой системе координат. Заметим, что проекции вектора на параллельные и одинаково направленные оси равны.

ОО1 + О1М=OM, значит это векторное равенство равносильно трем скалярным для одноименных координат:

Найдем старые координаты через новые:

Приведение уравнения кривой второго порядка к каноническому виду

Пусть уравнение кривой второго порядка не содержит, А 2 +С 2 >0

Ax 2 +Cy 2 +Dx+Ey+F=0

Выделяя полные квадраты, приведем его либо к уравнению одного из следующих видов:

(x-x0) 2 /a 2 +(y-y0) 2 /b 2 =1

(x-x0) 2 /a 2 -(y-y0) 2 /b 2 =1

-(x-x0) 2 /a 2 +(y-y0) 2 /b 2 =1

Или будет какой-нибудь частный случай.

Введем новую систему координат:

И получим систему с центром в точке O1. Тогда в новой системе координат уравнение кривой будет каноническим.

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Что такое гипербола

Каноническое и параметрическое уравнение гиперболы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:§21 Каноническое уравнение гиперболыСкачать

§21 Каноническое уравнение гиперболы

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Каноническое и параметрическое уравнение гиперболы

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Каноническое и параметрическое уравнение гиперболы

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Каноническое и параметрическое уравнение гиперболы

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Каноническое и параметрическое уравнение гиперболы
  • Выделяем квадраты в знаменателях:
    Каноническое и параметрическое уравнение гиперболы
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Каноническое и параметрическое уравнение гиперболы
    Каноническое и параметрическое уравнение гиперболы

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Каноническое и параметрическое уравнение гиперболы
      • Найдем асимптоты гиперболы. Вот так: Каноническое и параметрическое уравнение гиперболы
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Каноническое и параметрическое уравнение гиперболы

    на черновике выражаем:

    Каноническое и параметрическое уравнение гиперболы

    Уравнение распадается на две функции:

    Каноническое и параметрическое уравнение гиперболы

    — определяет верхние дуги гиперболы (то, что ищем);

    Каноническое и параметрическое уравнение гиперболы

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Каноническое и параметрическое уравнение гиперболы

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Каноническое и параметрическое уравнение гиперболы

    Видео:Видеоурок "Канонические уравнения прямой"Скачать

    Видеоурок "Канонические уравнения прямой"

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Каноническое и параметрическое уравнение гиперболы

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Каноническое и параметрическое уравнение гиперболы

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

    Лекция 31.2. Кривые второго порядка. Гипербола.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Каноническое и параметрическое уравнение гиперболы

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Каноническое и параметрическое уравнение гиперболы

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Каноническое и параметрическое уравнение гиперболы

    Запишем это уравнение в координатной форме:

    Каноническое и параметрическое уравнение гиперболы

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Каноническое и параметрическое уравнение гиперболы

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

    Математика без Ху!ни. Кривые второго порядка. Эллипс.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Каноническое и параметрическое уравнение гиперболы

    На самом деле для фокуса F2 и директрисы d2 условие

    Каноническое и параметрическое уравнение гиперболы

    можно записать в координатной форме так:

    Каноническое и параметрическое уравнение гиперболы

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Каноническое и параметрическое уравнение гиперболы

    Видео:Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |Скачать

    Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Каноническое и параметрическое уравнение гиперболы

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Каноническое и параметрическое уравнение гиперболы

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Каноническое и параметрическое уравнение гиперболы

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    💡 Видео

    Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

    Написать каноническое уравнение гиперболы.  Дан эксцентриситет

    Кривые второго порядка. ГиперболаСкачать

    Кривые второго порядка. Гипербола

    Видеоурок "Параметрические уравнения прямой"Скачать

    Видеоурок "Параметрические уравнения прямой"

    Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертежСкачать

    Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертеж

    Каноническое уравнение прямой в пространстве. 11 класс.Скачать

    Каноническое уравнение прямой в пространстве. 11 класс.

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Определить тип кривой (гипербола)Скачать

    Определить тип кривой (гипербола)

    §23 Построение гиперболыСкачать

    §23 Построение гиперболы

    §29 Эксцентриситет гиперболыСкачать

    §29 Эксцентриситет гиперболы

    Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

    Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

    §31.1 Приведение уравнения кривой к каноническому видуСкачать

    §31.1 Приведение уравнения кривой к каноническому виду

    Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

    Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

    Лекция 23. Виды уравнений прямой на плоскости.Скачать

    Лекция 23. Виды уравнений прямой на плоскости.
    Поделиться или сохранить к себе: