Калькулятор уравнений и неравенств с модулем

Видео:НЕРАВЕНСТВА С МОДУЛЕМСкачать

НЕРАВЕНСТВА С МОДУЛЕМ

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:11 класс, 29 урок, Уравнения и неравенства с модулямиСкачать

11 класс, 29 урок, Уравнения и неравенства с модулями

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Видео:Неравенства с модулем | Математика | TutorOnlineСкачать

Неравенства с модулем | Математика | TutorOnline

Немного теории.

Видео:Неравенства с модулем Часть 1 из 2 Простейшие неравенстваСкачать

Неравенства с модулем Часть 1 из 2 Простейшие неравенства

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что ( |x-a| ) — это расстояние на числовой прямой между точками x и a: ( |x-a| = rho (x;; a) ). Например, для решения уравнения ( |x-3|=2 ) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: ( x_1=1 ) и ( x_2=5 ).

Калькулятор уравнений и неравенств с модулем

Решая неравенство ( |2x+7| 0 ), то уравнение ( |f(x)|=c ) равносильно совокупности уравнений: ( left[begin f(x)=c \ f(x)=-c endright. )
2) Если ( c > 0 ), то неравенство ( |f(x)| c ) равносильно совокупности неравенств: ( left[begin f(x) c endright. )
4) Если обе части неравенства ( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, (x_1=-1, ; x_2=3 ).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию ( 2rho(x; ;2)+ rho(x; ;-3) =8 ) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Калькулятор уравнений и неравенств с модулем

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка ( M_1(x) ) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка ( M_2(x) ) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство ( |f(x)| |f(x)| ). Отсюда сразу следует, что ( g(x) > 0 ). Воспользуемся тем, что при ( g(x) > 0 ) неравенство ( |f(x)| 0, \ -g(x) 0 \ f(x) -g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) > 0 ) обе части неравенства ( |f(x)| 0 \ (f(x))^2 0 \ x^2 — 3x + 2 -(2x — x^2) endright. )
Решая эту систему, получаем:
( left<begin x(x — 2) 0 \ (x^2 — 3x + 2)^2 0 endright. Rightarrow )
( left<begin 0 0 endright. Rightarrow )
( left<begin 0 05 endright. )
Из последней системы находим: ( 05 g(x) ). Освободиться от знака модуля можно тремя способами.

Первый способ
Если (f(x) geqslant 0), то ( |f(x)| = f(x) ) и заданное неравенство принимает вид ( f(x) > g(x) ).
Если (f(x) g(x) ).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
( left<begin f(x) geqslant 0 \ f(x) > g(x) endright. ) ( left<begin f(x) g(x) endright. )

Второй способ.
Рассмотрим два случая: ( g(x) geqslant 0, ; g(x) g(x) ) выполняется для всех x из области определения выражения f(x).
Если ( g(x) geqslant 0 ), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство ( |f(x)| > g(x) ) равносильно совокупности неравенств ( f(x) g(x) ).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
( left<begin g(x) g(x) endright. )

Третий способ.
Воспользуемся тем, что при ( g(x) geqslant 0 ) неравенство ( |f(x)| > g(x) ) равносильно неравенству ( (|f(x)|)^2 > (g(x))^2 ). Это позволит свести неравенство ( |f(x)| > g(x) ) к совокупности систем:
( left<begin g(x) (g(x))^2 endright. )

ПРИМЕР 5. Решить неравенство ( |x^2 — 3x + 2| geqslant 2x — x^2 )

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
( left<begin x^2 — 3x + 2 geqslant 0 \ x^2 — 3x + 2 geqslant 2x — x^2 endright. ) ( left<begin x^2 — 3x + 2 0 ), то заданное неравенство равносильно совокупности двух неравенств:
( left[begin x^2 — 3x + 2 geqslant 2x — x^2 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Таким образом, получаем совокупность неравенства и двух систем неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 geqslant 2x — x^2; endright. ) ( left<begin 2x — x^2 > 0 \ x^2 — 3x + 2 leqslant -(2x — x^2) endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решив первую систему, получим: ( 0 0 ), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
( 2x — x^2 leqslant 0; ) ( left<begin 2x — x^2 > 0 \ (x^2 — 3x + 2)^2 geqslant (2x — x^2)^2 endright. )
Решив неравенство ( 2x — x^2 leqslant 0 ), получим: ( x leqslant 0,; x geqslant 2 )
Решая систему, получаем последовательно:
( left<begin x(x — 2)

Видео:Уравнения с модулемСкачать

Уравнения с модулем

Неравенства по-шагам

Видео:МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Результат

Примеры неравенств

  • Логарифмические неравенства
  • Показательные неравенства
  • Неравенства с модулем
  • Иррациональные неравенства
  • Тригонометрические неравенства
  • Линейные неравенства

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Универсальный математический калькулятор

Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам. Калькулятор уравнений и неравенств с модулем

Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).

Видео:Неравенства с модулем. Как правильно раскрывать модульСкачать

Неравенства с модулем. Как правильно раскрывать модуль

Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.

Разделитель системы уравнений

Натуральный логарифм и предел:

Видео:№14 с модулем за 3 минуты. ЕГЭ 2022 по профильной математикеСкачать

№14 с модулем за 3 минуты. ЕГЭ 2022 по профильной математике

Пояснения к калькулятору

  1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
  2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
  3. ⌫ — удалить в поле ввода символ слева от курсора.
  4. C — очистить поле ввода.
  5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
  6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
  7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .

Видео:Модуль в математике. Уравнения и неравенства | Математика ЕГЭ | УмскулСкачать

Модуль в математике. Уравнения и неравенства | Математика ЕГЭ | Умскул

Упрощение выражений, раскрытие скобок, разложение многочленов на множители

Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.

Видео:Графическое решение простейших неравенств с модулемСкачать

Графическое решение простейших неравенств с модулем

Решение уравнений и неравенств

Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .

Примеры решений уравнений и неравенств:

Видео:МодульСкачать

Модуль

Решение систем уравнений и неравенств

Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .

Примеры вычислений систем уравнений и неравенств:

Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Вычисление выражений с логарифмами

В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac$$ Например, $$log_ left(5x-1right) = frac$$

Примеры решений выражений с логарифмами:

Видео:6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать

6 класс, 24 урок, Модульные уравнения и неравенства с одной переменной

Вычисление пределов функций

Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .

Примеры решений пределов:

Видео:Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математикеСкачать

Неравенство с двумя модулями. Задание 14 ЕГЭ по профильной математике

Решение интегралов

Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
∫ f(x) — для неопределенного интеграла;
b a∫ f(x) — для определенного интеграла.

В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.

Примеры вычислений интегралов:

Видео:Контрольная работа. Уравнения с МОДУЛЕМСкачать

Контрольная работа. Уравнения с МОДУЛЕМ

Вычисление производных

Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) — производная первого порядка;
f»(x) — производная второго порядка;
f»'(x) — производная третьего порядка.
f n (x) — производная любого n-о порядка.

Видео:УРАВНЕНИЯ С МОДУЛЕМ | метод интерваловСкачать

УРАВНЕНИЯ С МОДУЛЕМ | метод интервалов

Действия над комплексными числами

Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i

💥 Видео

8 класс. Модуль числа. Уравнения и неравенства с модулем. Алгебра.Скачать

8 класс. Модуль числа. Уравнения и неравенства с модулем. Алгебра.

Решение неравенств с модулемСкачать

Решение неравенств с модулем

Неравенства с модулем | Математика 10 класс | УмскулСкачать

Неравенства с модулем | Математика 10 класс | Умскул
Поделиться или сохранить к себе: