Наш калькулятор поможет вам решить иррациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.
Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.
- Добро пожаловать на сайт Pocket Teacher
- Наш искусственный интеллект решает сложные математические задания за секунды
- начать
- Иррациональные уравнения
- Что такое иррациональные уравнения и как их решать
- Бесплатный онлайн калькулятор иррациональных уравнений
- Системы уравнений по-шагам
- Результат
- Примеры систем уравнений
- Правила ввода
- Калькулятор систем уравнений
- Воспользуйтесь нашим простым онлайн-калькулятором системы уравнений, чтобы решать системы уравнений с пошаговым объяснением.
- Добавьте калькулятор алгебры в закладки вашего браузера
- Как пользоваться калькулятором систем уравнений
- Шаг 1
- Шаг 2
- Шаг 3
- Что такое системы уравнений
- 🎦 Видео
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Добро пожаловать на сайт Pocket Teacher
Наш искусственный интеллект решает сложные математические задания за секунды
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:Система иррациональных уравнений #1Скачать
начать
Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Иррациональные уравнения
Что такое иррациональные уравнения и как их решать
Уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень, называются иррациональными. Когда мы имеет дело с дробной степенью, то мы лишаем себя многих математических действий для решения уравнения, поэтому иррациональные уравнения решаются по-особенному.
Иррациональные уравнения, как правило, решают при помощи возведения обеих частей уравнения в одинаковую степень. При этом возведение обеих частей уравнения в одну и ту же нечетную степень – это равносильное преобразование уравнения, а в четную – неравносильное. Такая разница получается из-за таких особенностей возведения в степень, таких как если возвести в чётную степень, то отрицательные значения “теряются”.
Смыслом возведения в степень обоих частей иррационального уравнения является желание избавиться от “иррациональности”. Таким образом нам нужно возвести обе части иррационального уравнения в такую степень, чтобы все дробные степени обоих частей уравнения превратилась в целые. После чего можно искать решение данного уравнения, которое будет совпадать с решениями иррационального уравнения, с тем отличием, что в случае возведения в чётную степень теряется знак и конечные решения потребуют проверки и не все подойдут.
Таким образом, основная трудность связана с возведением обеих частей уравнения в одну и ту же четную степень – из-за неравносильности преобразования могут появиться посторонние корни. Поэтому обязательна проверка всех найденных корней. Проверить найденные корни чаще всего забывают те, кто решает иррациональное уравнение. Также не всегда понятно в какую именно степень нужно возводить иррациональное уравнение, чтобы избавиться от иррациональности и решить его. Наш интеллектуальный калькулятор как раз создан для того, чтобы решать иррациональное уравнение и автоматом проверить все корни, что избавит от забывчивости.
Видео:10 класс. Алгебра. Системы уравненийСкачать
Бесплатный онлайн калькулятор иррациональных уравнений
Наш бесплатный решатель позволит решить иррациональное уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:Система иррациональных уравнений #2Скачать
Системы уравнений по-шагам
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Результат
Примеры систем уравнений
- Метод Гаусса
- Метод Крамера
- Прямой метод
- Система нелинейных уравнений
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать
Калькулятор систем уравнений
Видео:Система иррациональных уравнений #3Скачать
Воспользуйтесь нашим простым онлайн-калькулятором системы уравнений, чтобы решать системы уравнений с пошаговым объяснением.
- Главная
- Системы уравнений
Добавьте калькулятор алгебры в закладки вашего браузера
1. Для Windows или Linux — нажмите Ctrl + D .
2. Для MacOS — нажмите Cmd + D .
3. Для iPhone (Safari) — нажмите и удерживайте , затем нажмите Добавить закладку
4. Для Google Chrome : нажмите 3 точки в правом верхнем углу, затем нажмите знак звездочки
Видео:Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать
Как пользоваться калькулятором систем уравнений
Шаг 1
Введите проблему с системой уравнений в поле ввода.
Шаг 2
Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.
Шаг 3
Во всплывающем окне выберите нужную операцию. Вы также можете воспользоваться поиском.
Видео:Иррациональные уравнения и их системы. 11 класс.Скачать
Что такое системы уравнений
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных. Другими словами, если дано несколько уравнений с одной, двумя или несколькими неизвестными и все эти уравнения (равенства) должны выполняться одновременно, мы называем такую группу уравнений системой. Объедините уравнения в систему, используя фигурную скобку.
Калькулятор алгебры с расширенными функциями. Удобный и простой инженерный калькулятор с богатым арсеналом возможностей для математических расчетов и при этом с приятным и интуитивно понятным интерфейсом.
🎦 Видео
Математика без Ху!ни. Метод Гаусса.Скачать
Решение систем уравнений второй степени. Алгебра, 9 классСкачать
Алгебра 9 класс. Графическое решение систем уравненийСкачать
Решение системы уравнений методом ГауссаСкачать
Решение системы уравнений методом Крамера.Скачать
Матричный метод решения систем уравненийСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать
Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать
Решение систем уравнений второй степениСкачать