Наш калькулятор поможет вам решить иррациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.
Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.
- Добро пожаловать на сайт Pocket Teacher
- Наш искусственный интеллект решает сложные математические задания за секунды
- начать
- Иррациональные уравнения
- Что такое иррациональные уравнения и как их решать
- Бесплатный онлайн калькулятор иррациональных уравнений
- Системы уравнений по-шагам
- Результат
- Примеры систем уравнений
- Правила ввода
- Калькулятор систем уравнений
- Воспользуйтесь нашим простым онлайн-калькулятором системы уравнений, чтобы решать системы уравнений с пошаговым объяснением.
- Добавьте калькулятор алгебры в закладки вашего браузера
- Как пользоваться калькулятором систем уравнений
- Шаг 1
- Шаг 2
- Шаг 3
- Что такое системы уравнений
- 💡 Видео
Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Добро пожаловать на сайт Pocket Teacher
Наш искусственный интеллект решает сложные математические задания за секунды
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:Система иррациональных уравнений #1Скачать
начать
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Иррациональные уравнения
Что такое иррациональные уравнения и как их решать
Уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень, называются иррациональными. Когда мы имеет дело с дробной степенью, то мы лишаем себя многих математических действий для решения уравнения, поэтому иррациональные уравнения решаются по-особенному.
Иррациональные уравнения, как правило, решают при помощи возведения обеих частей уравнения в одинаковую степень. При этом возведение обеих частей уравнения в одну и ту же нечетную степень – это равносильное преобразование уравнения, а в четную – неравносильное. Такая разница получается из-за таких особенностей возведения в степень, таких как если возвести в чётную степень, то отрицательные значения “теряются”.
Смыслом возведения в степень обоих частей иррационального уравнения является желание избавиться от “иррациональности”. Таким образом нам нужно возвести обе части иррационального уравнения в такую степень, чтобы все дробные степени обоих частей уравнения превратилась в целые. После чего можно искать решение данного уравнения, которое будет совпадать с решениями иррационального уравнения, с тем отличием, что в случае возведения в чётную степень теряется знак и конечные решения потребуют проверки и не все подойдут.
Таким образом, основная трудность связана с возведением обеих частей уравнения в одну и ту же четную степень – из-за неравносильности преобразования могут появиться посторонние корни. Поэтому обязательна проверка всех найденных корней. Проверить найденные корни чаще всего забывают те, кто решает иррациональное уравнение. Также не всегда понятно в какую именно степень нужно возводить иррациональное уравнение, чтобы избавиться от иррациональности и решить его. Наш интеллектуальный калькулятор как раз создан для того, чтобы решать иррациональное уравнение и автоматом проверить все корни, что избавит от забывчивости.
Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать
Бесплатный онлайн калькулятор иррациональных уравнений
Наш бесплатный решатель позволит решить иррациональное уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:Система иррациональных уравнений #3Скачать
Системы уравнений по-шагам
Видео:Система иррациональных уравнений #2Скачать
Результат
Примеры систем уравнений
- Метод Гаусса
- Метод Крамера
- Прямой метод
- Система нелинейных уравнений
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Калькулятор систем уравнений
Видео:10 класс. Алгебра. Системы уравненийСкачать
Воспользуйтесь нашим простым онлайн-калькулятором системы уравнений, чтобы решать системы уравнений с пошаговым объяснением.
- Главная
- Системы уравнений
Добавьте калькулятор алгебры в закладки вашего браузера
1. Для Windows или Linux — нажмите Ctrl + D .
2. Для MacOS — нажмите Cmd + D .
3. Для iPhone (Safari) — нажмите и удерживайте , затем нажмите Добавить закладку
4. Для Google Chrome : нажмите 3 точки в правом верхнем углу, затем нажмите знак звездочки
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Как пользоваться калькулятором систем уравнений
Шаг 1
Введите проблему с системой уравнений в поле ввода.
Шаг 2
Нажмите Enter на клавиатуре или на стрелку справа от поля ввода.
Шаг 3
Во всплывающем окне выберите нужную операцию. Вы также можете воспользоваться поиском.
Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать
Что такое системы уравнений
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных. Другими словами, если дано несколько уравнений с одной, двумя или несколькими неизвестными и все эти уравнения (равенства) должны выполняться одновременно, мы называем такую группу уравнений системой. Объедините уравнения в систему, используя фигурную скобку.
Калькулятор алгебры с расширенными функциями. Удобный и простой инженерный калькулятор с богатым арсеналом возможностей для математических расчетов и при этом с приятным и интуитивно понятным интерфейсом.
💡 Видео
Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать
Иррациональные уравнения и их системы. 11 класс.Скачать
Алгебра 9 класс. Графическое решение систем уравненийСкачать
Решение системы уравнений методом ГауссаСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Матричный метод решения систем уравненийСкачать
Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать
Решение системы уравнений методом Крамера.Скачать
Решение систем уравнений второй степениСкачать
Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать