Верхний предел | ∫ | ||||||||||
Нижний предел | Ввод распознает различные синонимы функций, как asin , arsin , arcsin Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x) Список математических функций и констант : • ln(x) — натуральный логарифм • sh(x) — гиперболический синус • ch(x) — гиперболический косинус • th(x) — гиперболический тангенс • cth(x) — гиперболический котангенс • sch(x) — гиперболический секанс • csch(x) — гиперболический косеканс • arsh(x) — обратный гиперболический синус • arch(x) — обратный гиперболический косинус • arth(x) — обратный гиперболический тангенс • arcth(x) — обратный гиперболический котангенс • arsch(x) — обратный гиперболический секанс • arcsch(x) — обратный гиперболический косеканс Содержание Видео:HP32sII обзор возможностей: решение уравнений, считаем интеграл, переводим величины...Скачать Калькулятор ИнтеграловВидео:Интеграл! Легко и правильно посчитатьСкачать Вычисление интегралов онлайн |
Переменная интегрирования: | |
---|---|
Верхний предел (до): | |
Нижний предел (от): | –∞ |
Использовать только численное интегрирование? | |
Упрощать выражения интенсивнее? | |
Упрощать все корни? (√ x² станет x, а не |x|) | |
Использовать комплексные числа (ℂ)? | |
Использовать числа с запятой вместо дробей? |
Генератор заданий для тренировки позволяет сгенерировать сколько угодно различных случайных заданий.
Ниже Вы найдете настройки конфигурации и один из предложенных вариантов задания. Вы можете взяться за его решение (тогда оно будет введено в Калькулятор) или сгенерировать новое.
Вычисляем интеграл: Введите Ваш результат:
Следующее выражение будет вычислено:
Загрузка … пожалуйста подождите!
Это займет несколько секунд.
Это не то, что Вы имели ввиду? Используйте скобки! В случае необходимости, выберите переменную и пределы интегрирования в разделе «Настройки«.
Поддержка
Вам помог мой калькулятор? Расскажите своим друзьям об этом Калькуляторе и Вы тоже сможете мне помочь!
Результаты вычислений
Как работает Калькулятор Интегралов
Для тех кому интересны технические подробности, в этой части рассказывается как устроен и работает Калькулятор Интегралов.
Сначала синтаксический анализатор (па́рсер) анализирует исходное математическое выражение. Он преобразует его в форму более удобную для компьютера, а именно в форму дерева (см. картинку ниже). В процессе такого преобразования, Интегральный Калькулятор должен соблюдать порядок операций с учетом их приоритета. Так же, как и то, что в математических выражениях знак умножения часто опускается, например, мы обычно пишем «5x» вместо «5*x». Калькулятор Интегралов должен уметь понимать такие случаи и сам добавлять знак умножения.
Па́рсер написан на JavaScript, и основывается на алгоритме сортировочной станции, поэтому может исполняться прямо в браузере. Это дает возможность генерировать удобочитаемое выражение на ходу, преобразуя получающееся дерево в код для LaTeX (Ла́тех). С помощью MathJax происходит генерация картинки и ее отображение в браузере.
По нажатию кнопки «=», Калькулятор Интегралов отправляет математическое выражение вместе с параметрами (переменной интегрирования и пределами интегрирования) на сервер, где оно анализируется еще раз. В этот раз выражение преобразуется в форму которая будет понятна системе компьютерной алгебры Maxima (Ма́ксима).
Ма́ксима вычисляет интеграл математической функции. Результат Ма́ксимы снова преобразуется в Ла́тех а затем показывается пользователю. Первообразная вычисляется с помощью алгоритма Ри́ша, который достаточно замысловат для понимания человеком. Именно поэтому задача показывать промежуточные шаги решения интегралов является такой сложной.
Для того чтобы всё-таки показать пошаговое решение, Калькулятор Интегралов использует такие же методы, которыми бы воспользовался человек. Алгоритм, который это осуществляет, разрабатывался в течении нескольких лет и был написан на собственном языке программирования Ма́ксимы. Программа содержит более чем 17000 строк кода. Если интегрируемое выражение совпадает по форме с уже известным, алгоритм применяет заранее определённые правила для решения интеграла (например, метод неопределённых коэффициентов для рациональных функций, тригонометрическую подстановку в интегралах с квадратным корнем из квадратичной функции или интегрирование по частям для продуктов определенных функций). Если же оно не совпадает с уже известным, тогда алгоритм пробует разные подстановки и преобразования пока интеграл не будет решен или пока не закончится отведённое для этого время или же пока не кончатся все возможные варианты. С одной стороны, у Калькулятора нет математической интуиции, которая бы очень помогла в поисках первообразной, но зато, с другой стороны, Калькулятор в состоянии перепробовать большое количество разных вариантов за очень короткое время. Такое пошаговое вычисление первообразной по правилам, зачастую, более компактно и элегантно чем вычисленное Ма́ксимой.
Еще один режим работы «Проверка решения» должен решить сложную задачу по определению являются ли два математических выражения равными друг другу. Разница между выражениями вычисляется и упрощается с помощью Ма́ксимы настолько, насколько это возможно. К примеру, это может быть переписывание тригонометрических/гиперболических функций в их экспоненциальные формы. Если удается упростить разницу до нуля — задача выполнена. В противном случае, применяется вероятностный алгоритм, который вычисляет и сравнивает оба выражения в случайно выбранных местах. В случае с первообразной, вся процедура повторяется для каждой производной, т.к. первообразная может отличаться константой.
Интерактивные графики функций вычисляются в браузере и отрисовываются на Сanvas («Холст») из HTML5. Для каждой математической функции, которая должна быть отрисована, Калькулятор создает функцию JavaScript, которая затем вычисляется с шагом, необходимым для правильного отображения графика. Все сингулярности (например полюса) функции обнаруживаются в процессе отрисовки и обрабатываются отдельно. Управление жестами для мобильных устройств сделано на основе hammer.js.
Если у Вас есть вопросы или пожелания, а так же идеи как улучшить Калькулятор Интегралов, пожалуйста пишите мне на e-mail.
© David Scherfgen 2022 — all rights reserved.
Видео:Определенный интеграл. 11 класс.Скачать
Неопределенный интеграл
Неопределенный интеграл онлайн
В школе говорят, интеграл – это значок ∫, а вычисление интеграла, то есть процесс интегрирования, – это операция обратная дифференцированию. Согласитесь скучно!
Разумеется, у школьников возникает резонный вопрос: а нафиг он нам нужен?
Но если бы учитель уделил несколько минут на вводную про интегралы, такой вопрос всё равно бы возник, но уже не у всех!
Вводная к интегралам
В далеком 17 веке были на тот момент нерешенные насущные проблемы, а именно изучались закономерности движения тел. Много трудов было проделано Ньютоном, чтобы понять, как вычисляется скорость тела в любой момент времени. Но чем дальше, тем оказалось интереснее.
Допустим, мы знаем закон изменения скорости тела – это некая функция. Тогда площадь фигуры, ограниченная этой кривой и осью координат, будет равна пройденному пути. Вычисляя неопределенный интеграл от функции, мы как раз находим общий закон движения.
В этом заключается один из физических смыслов интеграла.
Как вы уже поняли, геометрический смысл интеграла – это площадь криволинейной трапеции. Соответственно с помощью кратного интеграла вычисляется объем тела.
Лейбниц и Ньютон заложили основы дифференциального и интегрального исчисления. В последующие десятилетия было много великих открытий, связанных с вычислением интегралов.
Поскольку подынтегральная функция может принимать различные виды, естественно это привело к разделению интегралов на свои типы, а главное были отрыты многочисленные методы решения интегралов.
Но не все так безоблачно. На практике часто происходит так, что в аналитическом виде вычислить интегралы невозможно, то есть используя какой-либо известный метод. Конечно, получить аналитическое решение это здорово, но, с другой стороны, главное ведь вычислить точное значение интеграла. В этом случае интегралы решаются численными методами. Благодаря компьютерным мощностям, такие задачи не представляют особых сложностей для современного человека.
Калькулятор решения интегралов
Теперь самое интересное. Еще каких-то 15 лет назад школьник и помыслить не мог, что под рукой будут такие калькуляторы интегралов, как, например, наш. Это безусловно облегчает процесс обучения. Можно проверять свои решения, находить допущенные ошибки и лучше усваивать образовательный курс.
И тут в который раз повторяем, калькулятор решения интегралов – это только ваш безотказный помощник, к которому можете обратиться в любое время. Но никак не подмена вашей головы. Старайтесь самостоятельно решать задачи, только так можно развивать мышление, а компьютер будет в помощь.
🔍 Видео
ИНТЕГРАЛ С НУЛЯ | определенный интеграл | ТАБЛИЦА ИНТЕГРАЛОВ | сумма РиманаСкачать
Математика без ху!ни. Интегралы, часть 1. Первообразная. Дифференцирование и интегрирование.Скачать
Гайд на CASIO. Все функции casio.Скачать
Калькулятор для чайников | Гайд по калькулятору для ЕГЭ по ФизикеСкачать
Математика это не ИсламСкачать
Математика без Ху!ни. Определенные интегралы, часть 1.Скачать
Как посчитать любое уравнение! Шок!!Скачать
Обзор инженерного калькулятораСкачать
Программируемые графические калькуляторы! Casio fx-cg50Скачать
Примеры решения определенных интеграловСкачать
Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Как использовать интеграл в обычной жизни. Математик МГУ и Савватеев #shortsСкачать
Определенные и неопределенные интегралы для чайников. Свойства интегралов.Скачать
Неопределенный интеграл. Примеры решений интегралов. Часть 1 | Высшая математика TutorOnlineСкачать
Функция SOLVE.Обучающее видеоСкачать
Видеоурок по математике "Вычисление интегралов - 1"Скачать