Наш калькулятор поможет вам решить рациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.
Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.
- Добро пожаловать на сайт Pocket Teacher
- Наш искусственный интеллект решает сложные математические задания за секунды
- начать
- Рациональные уравнения
- Бесплатный онлайн калькулятор
- Калькулятор рациональных выражений
- Калькулятор для вычисления рациональных выражений
- Ввод данных в калькулятор для вычисления рациональных выражений
- Дополнительные возможности калькулятора для вычисления координат середины отрезка
- Правила. Сложение, вычитание, умножение и деление дробей.
- Сложение обыкновенных дробей
- Вычитание обыкновенных дробей
- Умножение обыкновенных дробей
- Деление обыкновенных дробей
- Универсальный математический калькулятор
- Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.
- Пояснения к калькулятору
- Упрощение выражений, раскрытие скобок, разложение многочленов на множители
- Решение уравнений и неравенств
- Решение систем уравнений и неравенств
- Вычисление выражений с логарифмами
- Вычисление пределов функций
- Решение интегралов
- Вычисление производных
- Действия над комплексными числами
- 🎦 Видео
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Добро пожаловать на сайт Pocket Teacher
Наш искусственный интеллект решает сложные математические задания за секунды
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
начать
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Рациональные уравнения
В рациональных уравнениях обе части уравнения представляют собой рациональные выражения вида: s(x) = 0 или расширено: s(x) = b(x), где s(x), b(x) – рациональные выражения.
Рациональное выражение является алгебраическим выражением, которое состоит из рациональных чисел и переменной величины, соединенных с помощью сложения, вычитания, умножения, деления и возведения в степень с натуральным показателем. Таким образом, это целые и дробные выражения без радикалов.
Действия с рациональными числами обладают свойствами действий с целыми числами.
К примеру, при умножении рациональных чисел есть дополнительное свойство – умножение взаимно обратных чисел. Для того чтобы умножить два рациональных числа, необходимо умножить модули этих чисел, а перед ответом поставить «плюс», если у множителей одинаковые знаки и «минус», если знаки разные.
Умножение рационального числа на ноль. Когда в рациональном уравнении хоть один множитель – ноль, то и произведение будет равняться нолю.
Умножение рациональных чисел с разными знаками. При умножении нескольких чисел с разными знаками, необходимо умножить модули каждого из этих чисел. Если количество множителей с отрицательными знаками – четное, то произведение всегда будет со знаком «плюс», если количество множителей с отрицательными знаками – нечетное, то и произведение будет со знаком «минус».
Делить на ноль в рациональных уравнениях, как и в обычных нельзя.
Чтобы решить рациональное уравнение, необходимо определить тип этого уравнения и применить некоторые математические хитрости, созданные для этого типа. Если Вы не помните этих хитростей, то можете воспользоваться калькулятором для решения рациональных уравнений, который быстро подберёт все корни данного уравнений.
Решением рационального уравнения будут являться корень – конкретное число, при постановке которого в уравнение даст верное равенство. Корней рационального уравнения может быть много и важно в решении не упустить ни один корень.
Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Бесплатный онлайн калькулятор
Наш бесплатный решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать
Калькулятор рациональных выражений
Предлагаю вам воспользоваться онлайн калькулятором для вычисления значений рациональных выражений.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач дробями и степенями.
Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать
Калькулятор для вычисления рациональных выражений
| С | 1 | 2 | 3 | ÷ | |
| | 4 | 5 | 6 | × | |
( | ) | 7 | 8 | 9 | — | |
a 2 | a b | . | 0 | + |
Калькулятор работает в тестовом режиме. Если вы нашли ошибку, пожалуйста напишите в комментариях условия задачи или прикрепите скриншет ее решения.
Ввод данных в калькулятор для вычисления рациональных выражений
В онлайн калькулятор можно вводить числа, десятичные дробы, обыкновенные дроби, смешанные числа и целые степени.
Дополнительные возможности калькулятора для вычисления координат середины отрезка
- Используйте кнопки калькулятора и или и на клавиатуре, для перемещения между полями калькулятора.
Правила. Сложение, вычитание, умножение и деление дробей.
Сложение обыкновенных дробей
- Чтобы сложить две обыкновенные дроби, следует:
- привести дроби к наименьшему общему знаменателю;
- сложить числители дробей, а знаменатель оставить без изменений;
- сократить полученную дробь;
- если получилась неправильная дробь преобразовать неправильную дробь в смешанную.
Вычитание обыкновенных дробей
- Чтобы вычесть из одной обыкновенной дроби другую, следует:
- привести дроби к наименьшему общему знаменателю;
- из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений;
- сократить полученную дробь.
Умножение обыкновенных дробей
- Чтобы умножить две обыкновенные дроби, надо:
- перемножить числители и знаменатели дробей;
- сократить полученную дробь.
Деление обыкновенных дробей
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать
Универсальный математический калькулятор
Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам.
Также универсальный калькулятор умеет производить действия со скобками, дробями, тригонометрическими функциями, возведение в любую степень и многое другое (смотрите примеры ниже).
Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
Онлайн калькулятор уравнений, интегралов, производных, пределов, дробей и пр.
Разделитель системы уравнений
Натуральный логарифм и предел:
Видео:Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать
Пояснения к калькулятору
- Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵ .
- Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и → .
- ⌫ — удалить в поле ввода символ слева от курсора.
- C — очистить поле ввода.
- При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
- Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½ , ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
- Ввод числа в n-ой степени и квадратного корня прозводится кнопками a b и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей → .
Видео:Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)Скачать
Упрощение выражений, раскрытие скобок, разложение многочленов на множители
Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.
Видео:Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)Скачать
Решение уравнений и неравенств
Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x , y , z .
Примеры решений уравнений и неравенств:
Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать
Решение систем уравнений и неравенств
Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ; .
Примеры вычислений систем уравнений и неравенств:
Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 57 часть. 9 класс.Скачать
Вычисление выражений с логарифмами
В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$log_a left(bright) = frac$$ Например, $$log_ left(5x-1right) = frac$$
Примеры решений выражений с логарифмами:
Видео:#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать
Вычисление пределов функций
Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim .
Примеры решений пределов:
Видео:РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать
Решение интегралов
Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
∫ f(x) — для неопределенного интеграла;
b a∫ f(x) — для определенного интеграла.
В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.
Примеры вычислений интегралов:
Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать
Вычисление производных
Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке «x». Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) — производная первого порядка;
f»(x) — производная второго порядка;
f»'(x) — производная третьего порядка.
f n (x) — производная любого n-о порядка.
Видео:8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать
Действия над комплексными числами
Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i
🎦 Видео
Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать
Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать
Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать