Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения: y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.
Примеры решения однородных дифференциальных уравнений 1-го порядка.
1) Решить уравнение
Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда
u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки
u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,
Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0
В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u
ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда
ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. ( по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:
По свойству логарифмов:
Это — общий интеграл уравнения.
Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x ( x>0) входят в общее решение.
2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.
Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:
u’x=1/u. Так как u — функция от икса, u’=du/dx:
Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).
и поскольку в обеих частях стоят табличные интегралы, сразу же получаем
Выполняем обратную замену:
Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:
3) Найти общий интеграл однородного уравнения:
(x²-y²)dy-2xydx=0.
Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:
(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):
(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:
xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:
(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:
x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:
x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):
В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:
(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:
По свойствам логарифмов:
Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.
Можно получить запись решения в другом виде, если слева оставить слагаемое с x:
Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.
Задания для самопроверки:
Так как u=y/x, u²=y²/x², то есть y²=u²x²,
2) Проверив, что данное уравнение является однородным, делаем замену y=ux, отсюда y’=u’x+u. Подставляем в условие:
Делим обе части уравнения на x:
Интегрируем обе части:
и, умножив на x обе части уравнения, получаем:
- Однородные дифференциальные уравнения первого порядка
- Определение
- Как определить однородное дифференциальное уравнение
- Пример
- Метод решения однородного дифференциального уравнения
- Пример решения однородного дифференциального уравнения первого порядка
- Однородные дифференциальные уравнения и приводящиеся к ним
- Однородные уравнения
- Уравнения, приводящиеся к однородным
- 💥 Видео
Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать
Однородные дифференциальные уравнения первого порядка
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Определение
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Как определить однородное дифференциальное уравнение
Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.
Пример
Определить, является ли данное уравнение однородным
Делаем замену y → ty , x → tx .
Делим на t 2 .
.
Уравнение не содержит t . Следовательно, это однородное уравнение.
Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
Метод решения однородного дифференциального уравнения
Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .
При f ( u ) – u ≠ 0 и x ≠ 0 получаем:
Интегрируем:
Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:
Заменим постоянную интегрирования C на ln C , тогда
Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:
Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).
Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Пример решения однородного дифференциального уравнения первого порядка
Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .
Постоянная t сократилась. Поэтому уравнение является однородным.
Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .
При u 2 – 1 ≠ 0 имеем:
Интегрируем:
Интегралы табличные,
.
Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.
Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .
Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.
Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать
Однородные дифференциальные уравнения
и приводящиеся к ним
Видео:Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать
Однородные уравнения
Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .
Например, функция есть однородная функция второго измерения, так как
При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как
Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде
Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:
Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).
Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .
Пример 1. Решить однородное уравнение .
Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим
Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .
Отсюда общее решение: .
При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.
Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.
Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.
Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.
Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).
Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать
Уравнения, приводящиеся к однородным
А. Рассмотрим дифференциальное уравнение вида
где — постоянные, а — непрерывная функция своего аргумента .
Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.
Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.
1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду
Выбирая и как решение системы линейных уравнений
получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).
2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.
Пример 3. Решить уравнение .
Решение. Рассмотрим систему линейных алгебраических уравнений
Определитель этой системы .
Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид
Это уравнение является однородным уравнением. Полагая , получаем
Интегрируя, найдем или .
Возвращаемся к переменным :
Пример 4. Решить уравнение .
Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид
Разделяя переменные, получаем
Возвращаясь к переменным , получаем общий интеграл данного уравнения
Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .
Пример 5. Решить уравнение .
Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим
Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .
Положим ; исходное уравнение принимает вид
Положим теперь . Тогда это уравнение примет вид , откуда .
Разделяем переменные в этом уравнении . Интегрируя, найдем
Заменяя через , получаем общий интеграл данного уравнения
Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.
💥 Видео
Однородное дифференциальное уравнениеСкачать
Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать
Как распознать талантливого математикаСкачать
10. Уравнения БернуллиСкачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
5. Однородные дифференциальные уравнения. Часть 2.Скачать
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Однородные дифференциальные уравнения первого порядкаСкачать