Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Как решить однородное дифференциальное уравнение

Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения: y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.

Примеры решения однородных дифференциальных уравнений 1-го порядка.

1) Решить уравнение

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда

u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки

u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда

ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. ( по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

По свойству логарифмов:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Это — общий интеграл уравнения.

Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x ( x>0) входят в общее решение.

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.

Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:

u’x=1/u. Так как u — функция от икса, u’=du/dx:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

и поскольку в обеих частях стоят табличные интегралы, сразу же получаем

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Выполняем обратную замену:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

3) Найти общий интеграл однородного уравнения:

(x²-y²)dy-2xydx=0.

Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:

(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):

(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:

xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:

(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:

x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:

x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

По свойствам логарифмов:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Можно получить запись решения в другом виде, если слева оставить слагаемое с x:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.

Задания для самопроверки:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Так как u=y/x, u²=y²/x², то есть y²=u²x²,

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

2) Проверив, что данное уравнение является однородным, делаем замену y=ux, отсюда y’=u’x+u. Подставляем в условие:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Делим обе части уравнения на x:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Интегрируем обе части:

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

и, умножив на x обе части уравнения, получаем:

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Однородные дифференциальные уравнения первого порядка

Какую подстановку применяют при решении однородного дифференциального уравнения первого порядка

Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать

4. Однородные дифференциальные уравнения (часть 1)

Определение

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение. Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Делаем замену y → ty , x → tx .

Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения. Однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u — функция от x . Дифференцируем по x :
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение (i).
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f ( u ) – u ) .

При f ( u ) – u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f ( u ) – u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii). Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i).

Всякий раз, когда мы, в процессе преобразований, делим какое-либо уравнение на некоторую функцию, которую обозначим как g ( x, y ) , то дальнейшие преобразования справедливы при g ( x, y ) ≠ 0 . Поэтому следует отдельно рассматривать случай g ( x, y ) = 0 .

Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.

Пример решения однородного дифференциального уравнения первого порядка

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u – функция от x .
y′ = ( ux ) ′ = u′ x + u ( x ) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = – x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний – к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 – 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные,
.

Применим формулу:
( a + b )( a – b ) = a 2 – b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 – 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 19-07-2012 Изменено: 24-02-2015

Видео:Дифференциальные уравнения, 3 урок, Однородные уравненияСкачать

Дифференциальные уравнения, 3 урок, Однородные уравнения

Однородные дифференциальные уравнения
и приводящиеся к ним

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Однородные уравнения

Функция называется однородной функцией своих аргументов измерения , если справедливо тождество .

Например, функция есть однородная функция второго измерения, так как

При имеем функцию нулевого измерения. Например, есть однородная функция нулевого измерения, так как

Дифференциальное уравнение вида называется однородным относительно и , если есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

Вводя новую искомую функцию , уравнение (1) можно привести к уравнению с разделяющими переменными:

Если есть корень уравнения , то решение однородного уравнения будет или (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку .

Пример 1. Решить однородное уравнение .

Решение. Запишем уравнение в виде так что данное уравнение оказывается однородным относительно и . Положим , или . Тогда . Подставляя в уравнение выражения для и , получаем . Разделяем переменные: . Отсюда интегрированием находим

Так как , то, обозначая , получаем , где или . Заменяя на , будем иметь общий интеграл .

Отсюда общее решение: .

При разделении переменных мы делили обе части уравнения на произведение , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь и . Но в силу подстановки , а из соотношения получаем, что , откуда . Непосредственной проверкой убеждаемся, что функции и также являются решениями данного уравнения.

Пример 2. Рассмотреть семейство интегральных кривых однородного уравнения . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем , так что в силу самого уравнения , где и — угловые коэффициенты касательных к интегральным кривым и , в точках и соответственно (рис. 12).

Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

где — постоянные, а — непрерывная функция своего аргумента .

Если , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел отлично от нуля, то следует различать два случая.

1) Определитель . Вводя новые переменные и по формулам , где и — пока неопределенные постоянные, приведем уравнение (3) к виду

Выбирая и как решение системы линейных уравнений

получаем однородное уравнение . Найдя его общий интеграл и заменив в нем на , a на , получаем общий интеграл уравнения (3).

2) Определитель . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае , и, следовательно, уравнение (3) имеет вид . Подстановка приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение .

Решение. Рассмотрим систему линейных алгебраических уравнений

Определитель этой системы .

Система имеет единственное решение . Делаем замену . Тогда уравнение (5) примет вид

Это уравнение является однородным уравнением. Полагая , получаем

Интегрируя, найдем или .

Возвращаемся к переменным :

Пример 4. Решить уравнение .

Решение. Система линейных алгебраических уравнений несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку , . Уравнение примет вид

Разделяя переменные, получаем

Возвращаясь к переменным , получаем общий интеграл данного уравнения

Б. Иногда уравнение можно привести к однородному заменой переменного . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному приписать измерение 1, переменному — измерение и производной — измерение .

Пример 5. Решить уравнение .

Решение. Делаем подстановку , где пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для и , получим

Заметим, что имеет измерение имеет измерение , имеет измерение . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие , или .

Положим ; исходное уравнение принимает вид

Положим теперь . Тогда это уравнение примет вид , откуда .

Разделяем переменные в этом уравнении . Интегрируя, найдем

Заменяя через , получаем общий интеграл данного уравнения

Уравнение имеет еще очевидное решение , которое получается из общего интеграла при , если интеграл записать в виде , а затем перейти к пределу при . Таким образом, функция является частным решением исходного уравнения.

🎬 Видео

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Как распознать талантливого математикаСкачать

Как распознать талантливого математика

Однородное дифференциальное уравнениеСкачать

Однородное дифференциальное уравнение

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

5. Однородные дифференциальные уравнения. Часть 2.Скачать

5. Однородные дифференциальные уравнения. Часть 2.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Однородные дифференциальные уравнения первого порядкаСкачать

Однородные дифференциальные уравнения первого порядка
Поделиться или сохранить к себе: