Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для обозначения логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц
(в тысячах)
суффикс108
суффикс | корень358
суффикс & корень71
уравнение320
уравнение & суффикс0
уравнение | корень433

Какое количество страниц (в тысячах) будет найдено по запросу уравнение & корень?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Представим таблицу в виде кругов Эйлера. Пусть суффикс — круг 1, корень — круг 3, уравнение — круг 5. Тогда задача — найти количество элементов N в области 4: N4. По таблице известно:

Подставляем N2 в первое уравнение и получаем: N1 = 108 − 71 = 37. Теперь подставляем первое и третье уравнения в пятое и находим: N3 = 433 − 320 − 71 = 42. Далее подставляем N1, N2 и N3 во второе уравнение и находим N4 = 358 − 37 − 71 − 42 = 208.

Видео:БЕСКОНЕЧНОЕ количество корнейСкачать

БЕСКОНЕЧНОЕ количество корней

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для обозначения логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц
(в тысячах)
суффикс117
суффикс | корень345
суффикс & корень72
уравнение284
уравнение & суффикс0
уравнение & корень190

Какое количество страниц (в тысячах) будет найдено по запросу уравнение | корень?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Представим таблицу в виде кругов Эйлера. Пусть суффикс — круг 1, корень — круг 2, уравнение — круг 3. Тогда задача — найти количество элементов N в области 4: N2 + N3 + N4 + N5 + N6 + N7. По таблице известно:

Подставляем пятое уравнение в четвёртое уравнение и получаем: N3 = 284 − 190 = 94. Поскольку N5 = 0 получаем, что N4 = 72. Теперь подставляем N4 в первое уравнение и находим: N1 = 117 − 72 = 45. Далее подставляем N1, N4 и N7 во второе уравнение и находим N2 = 345 − 45 − 72 − 190 = 38.

Видео:ЕГЭ по информатике 2015 Задача 17Скачать

ЕГЭ по информатике 2015 Задача 17

Круги Эйлера в информатике

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Сегодня разберём задачи на круги Эйлера в информатике.

Леонард Эйлер — швейцарский, немецкий и российский математик и механик, сыгравший огромную роль в развитии этих наук.

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» — символ «&». В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц (в тысячах)
Пушкин3500
Лермонтов2000
Пушкин | Лермонтов4500

Какое количество страниц (в тысячах) будет найдено по запросу Пушкин & Лермонтов? Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Видим, что по запросу «Пушкин» в поисковике нашлось 3500 страниц. По запросу «Лермонтов» — 2000 страниц.

Запрос «Пушкин | Лермонтов» обозначает, что поисковик выдаст страницы, где есть слова про «Пушкина», и страницы, где есть слова про «Лермонтова», а так же могут быть страницы, где написано и про «Пушкина», и про «Лермонтова» одновременно.

Если сложить страницы, в которых написано про «Пушкина» и про «Лермонтова» получается 3500 + 2000 = 5500 страниц. Но почему же при запросе «Пушкин | Лермонтов» получается меньше страниц, всего 4500 ?

Этот факт обозначает то, что когда мы подсчитывали страницы про «Пушкина» (3500 страниц), мы подсчитали и те страницы, где было написано и про «Пушкина», и про «Лермонтова» одновременно.

Тоже самое и для количества страниц, где написано про «Лермонтова» (2000 страниц). В этом числе находятся и те, в которых одновременно упоминается и про «Пушкина», и про «Лермонтова».

В вопросе спрашивается, сколько страниц будет по запросу «Пушкин & Лермонтов«. Это обозначает, что как раз нужно найти количество страниц, где будет одновременно написано и про «Пушкина», и про «Лермонтова».

Пушкин & Лермонтов = (3500 + 2000) — 4500 = 5500 — 4500 = 1000 страниц.

Это и будет ответ!

Теперь решим эту задачу с помощью Кругов Эйлера!

У нас всего есть две сущности: «Пушкин» и «Лермонтов». Поэтому рисуем два пересекающихся круга, желательно разными цветами.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Объединение двух кругов в общую фигуру ( показано фиолетовым цветом), показывает операцию «Пушкин | Лермонтов». Эта операция всегда стремится увеличить площадь, объединить площади других фигур!

Обратите внимание, что круги пересекаются, из-за этого сумма площадей двух кругов по отдельности (3500 + 2000 = 5500) больше чем у фигуры, которая характеризует логическую операцию «ИЛИ» «Пушкин | Лермонтов» (4500).

Нужно найти площадь фигуры Пушкин & Лермонтов, которая закрашена золотистым цветом. Данная логическая операция «И» стремится уменьшить площадь. Она обозначает общую площадь других фигур.

Найдём сначала заштрихованную часть синего круга. Она равна: площадь фиолетовой фигуры (4500) минус площадь красного круга (3500).

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь легко найти площадь золотистой фигуры. Для этого нужно от площади синего круга вычесть площадь заштрихованной части. Получается:

Пушкин & Лермонтов (Количество страниц) = 2000 — 1000 = 1000

Получается, что по запросу Пушкин & Лермонтов будет найдено 1000 страниц.

Рассмотрим ещё одну не сложную разминочную задачу.

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц (в тысячах)
Кокос | Ананас3400
Кокос & Ананас900
Кокос2100

Какое количество страниц (в тысячах) будет найдено по запросу Ананас?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

У нас две сущности: Кокос и Ананас. Нарисуем два круга Эйлера, которые пересекаются между собой. Так же отменим все имеющееся данные.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Найдём заштрихованную часть красного круга.

Весь красный круг 2100. Золотистая область равна 900. Заштрихованная часть равна 2100 — 900 = 1200.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

После того, как нашли заштрихованную часть (такой полумесяц), можно найти уже площадь синего круга. Для этого нужно от площади фиолетовой фигуры отнять площадь заштрихованной части!

Ананас (Количество страниц) = 3400 — 1200 = 2200
Ответ: 2200

Разберём классическую задачу из информатики по кругам Эйлера.

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» — символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц (в тысячах)
(Космос & Звезда) | (Космос & Планета)1100
Космос & Планета600
Космос & Планета & Звезда50

Какое количество страниц (в тыс.) будет найдено по запросу Космос & Звезда?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

В этой задаче у нас три сущности: Космос, Планета, Звезда. Поэтому рисуем три круга Эйлера, которые пересекаются между собой.

Могут ли круги не пересекаться ? Могут! Если мы докажем, что площади по отдельности двух кругов в сумме дают площадь фигуры, которая получается при применении операции логического «ИЛИ».

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь отметим на нашем рисунке запрос (Космос & Звезда) | (Космос & Планета).

Сначала отменим для себя то, что находится в скобках. Первое Космос & Звезда

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь отметим вторую скобку Космос & Планета.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

В выражении (Космос & Звезда) | (Космос & Планета) две скобки соединяет знак логического «ИЛИ». Значит, эти две области нужно объединить! Область (Космос & Звезда) | (Космос & Планета) отмечена фиолетовым цветом!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Отметим Космос & Планета ещё раз, т.к. для этого выражения известно количество страниц.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Площадь фигуры для выражения Космос & Планета & Звезда будет очень маленькая. Это общая часть для всех трёх кругов. Отметим её оранжевым цветом! Каждая точка этой фигуры должна одновременно быть в трёх кругах!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Найти нужно Космос & Звезда. Отменим на рисунке чёрным цветом ту область, которую нужно найти. Мы эту область уже отмечали салатовым цветом.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь у нас есть все компоненты, чтобы решить эту задачу.

Найдём заштрихованную область.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Вся область Космос & Планета равна 600. А заштрихованная часть равна: область Космос & Планета (600) минус оранжевая область (50).

Количество страниц в заштрихованной части = 600 — 50 = 550

Тогда черная область легко находится: фиолетовая область (1100) минус заштрихованная область (550).

Количество страниц (при запросе Космос & Звезда) = 1100 — 550 = 550
Ответ: 550

Закрепляем материал по задачам на Круги Эйлера.

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для обозначения логической операции «И» – символ «&». В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц (в тысячах)
Море & Солнце290
Море & Пляж355
Море & (Пляж | Солнце)465

Какое количество страниц (в тысячах) будет найдено по запросу Море & Пляж & Солнце? Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

В задаче используются три сущности: Море, Пляж, Солнце. Поэтому нарисуем три пересекающихся круга Эйлера.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Отметим все области для которых нам даны количество страниц.

В начале отметим Море & (Пляж | Солнце). Для начало нарисуем область, которая в скобках (Пляж | Солнце) Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь нужно очертить общую часть фиолетовой области и зелёного круга и получится Море & (Пляж | Солнце). Отметим оранжевым цветом.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь отметим Море & Пляж.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь отметим Море & Солнце.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Найти нужно ту область, которая получается в результате выделения общей части для всех трёх кругов! Обозначим её чёрным цветом!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Найдём заштрихованную область!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается
Количество страниц (в заштрихованной области) =
= Количество страниц (В оранжевой области) — Море & Солнце =
= 465 — 290 = 175

Чтобы найти искомую чёрную область, нужно из Море & Пляж (355) вычесть заштрихованную область (175).

Количество страниц (Море & Пляж & Солнце) =
= Море & Пляж (355) — Количество страниц (в заштрихованной области) 175 =
= 355 — 175 = 180
Ответ: 180

Решим ещё одну тренировочную задачу из информатики на Круги Эйлера.

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для обозначения логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

ЗапросНайдено страниц (в тысячах)
Англия & (Уэльс & Шотландия | Ирландия)450
Англия & Уэльс & Шотландия213
Англия & Уэльс & Шотландия & Ирландия87

Какое количество страниц (в тысячах) будет найдено по запросу

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Нужно нарисовать 4 пересекающихся круга. Сначала нарисуем три круга, как обычно, оставив немного места для четвёртого круга.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Четвёртый круг для Ирландии нужно нарисовать так, чтобы он проходил через область (Англия & Уэльс & Шотландия). Это нам подсказывает сама таблица, где есть количество страниц для Англия & Уэльс & Шотландия, а так же для Англия & Уэльс & Шотландия & Ирландия.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Нужно отметить на рисунке Англия & (Уэльс & Шотландия | Ирландия). Это будем делать, как всегда поэтапно.

Область Уэльс & Шотландия выглядит так:

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Добавим к этой области Ирландию через логическое «ИЛИ». Получается область (Уэльс & Шотландия | Ирландия). Произошло объединение серой области и жёлтого круга!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Теперь нужно сделать операцию логического «И» получившийся области с «Англией». Тогда область Англия & (Уэльс & Шотландия | Ирландия) примет вид:

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Т.е. это общее между предыдущем серым контуром и красным кругом!

Отметим Англия & Уэльс & Шотландия — это общая территория трёх кругов: Красного, Синего и Зелёного. Отмечено оранжевым цветом.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Отметим Англия & Уэльс & Шотландия & Ирландия — это общая территория четырёх кругов. Область получается ещё меньше. Если взять точку в этой области, то мы будем находится сразу в четырёх кругах одновременно. Отмечено фиолетовым цветом.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Отметим то, что нужно найти Англия & Ирландия чёрным цветом.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Искомую чёрную область легко найти, если из серой области вычесть кусочек, окрашенный в бирюзовый цвет!

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Найдём, сколько страниц приходится на бирюзовый кусочек:

Количество страниц (для бирюзового кусочка) =
= Англия & Уэльс & Шотландия (213) — Англия & Уэльс & Шотландия & Ирландия (87) =
= 213 — 87 = 126

Найдём искомую чёрную область.

Количество станиц (для чёрной области) =
= Англия & (Уэльс & Шотландия | Ирландия) (450) — Количество (для бирюзового кусочка) =
450 — 126 = 324

Это и будет ответ!

Разберём задачу из реального экзамена по информатике, которая была в 2019 году в Москве! (Сейчас в 2021 задачи не встречаются на Круги Эйлера)

Задача (ЕГЭ по информатике, 2019, Москва)

В таблице приведены запросы и количество страниц, которые нашёл поисковый сервер по этим запросам в некоторым сегменте Интернета:

ЗапросНайдено страниц (в тысячах)
Суфле450
Корзина200
Эклер490
Суфле & Корзина70
Суфле & Эклер160
Корзина & Эклер0

Сколько страниц (в тысячах) будет найдено по запросу

Видим, что у нас три поисковых разных слова, поэтому будет три разных круга Эйлера!

Так же видим, что логическое «И» между словами Корзина и Эклер даёт 0 страниц. Это значит, что эти круги не пересекаются! Так же круги бы не пересекались, если бы операция логического «ИЛИ» совпадала бы с суммой этих кругов.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Видим, что Суфле имеет с двумя кругами пересечения, а Корзина и Эклер не пересекаются.

Отметим всё, что нам дано в условии.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Жёлтым цветом отмечено Суфле | Корзина | Эклер . Объединение всех трёх кругов. Это то, что нужно найти.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Искомая жёлтая фигура складывается из заштрихованных областей и красного круга! Площадь красного круга мы знаем. Нужно найти площади заштрихованных частей.

Левая заштрихованная область находится просто:

Количество страниц (лев. заштрих. область) =
= Эклер (490) — Суфле & Эклер (160) = 330

Так же найдём площадь правой заштрихованной области:

Количество страниц (прав. заштрих. область) =
= Корзина (200) — Суфле & Корзина (70) = 130

Теперь можно найти искомую жёлтую область

Количество страниц (Суфле | Корзина | Эклер) =
= Красный круг (450) + лев. заштрих. область (310) + прав. заштрих. область (130) =
= 450 + 330 + 130 = 910

Задача решена, можно писать ответ.

Разберём ещё одну задачу из реального ЕГЭ уже 2020 года

Задача (ЕГЭ по информатике, 2020, Москва)

В таблице приведены запросы и количество страниц, которые нашёл поисковый сервер по этим запросам в некоторым сегменте Интернета:

ЗапросНайдено страниц (в тысячах)
Аврора50
Крейсер45
Заря23
Аврора & Заря9
Заря & Крейсер0
Заря | Крейсер | Аврора93

Сколько страниц (в тысячах) будет найдено по запросу

Количество страниц при запросе Заря & Крейсер равно нулю. Значит, эти два круга не будут пересекаться.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Нарисуем все данные на рисунке.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается

Нужно найти для начала заштрихованную правую часть.

Какое количество страниц в тысячах будет найдено по запросу уравнение корень считается
Количество страниц (для двух заштрих. частей) =
З | К | А (93) — Красный круг (50) = 43

Левую заштрихованную область легко найти.

Количество страниц (для левой заштрих. части) =
Синий круг (23) — А & З (9) = 14

Тогда для правой заштрихованной области получается:

Колич. страниц (для правой заштрих. части) =
Колич. страниц (для двух заштрих. частей) (43) — Колич. страниц (для лев. заштрих. части) (14) =
= 43 — 14 = 29

Тогда искомую область легко найти:

Колич. страниц (А & K) =
Зелёный круг (45) — Колич. страниц (для правой заштрих. части) (29) =
45 — 29 = 16
Ответ: 16

На этом всё! Надеюсь, вы теперь будете с удовольствием решать задачи по информатике с помощью Кругов Эйлера.

🌟 Видео

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Находим корень за 20 секунд | Подготовка к ЕГЭ по математике | Нахождение корнейСкачать

Находим корень за 20 секунд | Подготовка к ЕГЭ по математике | Нахождение корней

Квадратный корень. 8 класс.Скачать

Квадратный корень. 8 класс.

Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать

Повысь свой уровень по теме КОРНИ | Математика | TutorOnline

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

ОГЭ 2024 по информатике | Задание №8 | Марина ГоробецСкачать

ОГЭ 2024 по информатике | Задание №8 | Марина Горобец

А вы решите уравнение? Solve the equation | МатематикаСкачать

А вы решите уравнение? Solve the equation | Математика

Как вычислить квадратный корень методом «Гуся и утки»? / Самый удобный метод вычисления корнейСкачать

Как вычислить квадратный корень методом «Гуся и утки»? / Самый удобный метод вычисления корней

Алгебра 8 класс — Квадратный Корень и его Свойства // Арифметический Квадратный КореньСкачать

Алгебра 8 класс — Квадратный Корень и его Свойства // Арифметический Квадратный Корень

Показатель корня должен быть натуральным числом ★ Лишние корни ★ Решите уравнениеСкачать

Показатель корня должен быть натуральным числом ★ Лишние корни ★ Решите уравнение

Сможешь найти ошибку в примере? #математика #арифметика #корень #алгебра #ошибка #интенрсноСкачать

Сможешь найти ошибку в примере? #математика #арифметика #корень #алгебра #ошибка #интенрсно

Как считать корни? #shortsСкачать

Как считать корни? #shorts

Как складывать корни?Скачать

Как складывать корни?

Если под корнем число в квадратеСкачать

Если под корнем число в квадрате

Простейшие уравнения ЕГЭ 2024/ Все типы задания №6 ЕГЭ профильСкачать

Простейшие уравнения ЕГЭ 2024/ Все типы задания №6 ЕГЭ профиль

Что такое квадратный кореньСкачать

Что такое квадратный корень

Корень n-ой степени. Алгебра, 9 классСкачать

Корень n-ой степени. Алгебра, 9 класс

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.
Поделиться или сохранить к себе: