Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Содержание
  1. Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами
  2. Методы решения систем линейных алгебраических уравнений (СЛАУ)
  3. Метод Крамера
  4. Матричный способ решения СЛАУ
  5. Метод Гаусса
  6. Ранг матрицы. Теорема Кронекера-Капелли
  7. Следствия из теоремы Кронекера — Капелли
  8. Линейные уравнения. Решение систем линейных уравнений матричным методом.
  9. Пример решения неоднородной СЛАУ.
  10. Как решать систему уравнений
  11. Основные понятия
  12. Линейное уравнение с двумя переменными
  13. Система двух линейных уравнений с двумя переменными
  14. Метод подстановки
  15. Пример 1
  16. Пример 2
  17. Пример 3
  18. Метод сложения
  19. Система линейных уравнений с тремя переменными
  20. Решение задач
  21. Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
  22. Задание 2. Как решать систему уравнений способом подстановки
  23. Задание 3. Как решать систему уравнений методом сложения
  24. Задание 4. Решить систему уравнений
  25. Задание 5. Как решить систему уравнений с двумя неизвестными
  26. 🌟 Видео

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Каким методом лучше всего решать систему уравнений невысокого порядка например третьегодля этого умножим все элементы первого столбца на эту неизвестную: Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Второй столбец умножим на Каким методом лучше всего решать систему уравнений невысокого порядка например третьеготретий столбец — на Каким методом лучше всего решать систему уравнений невысокого порядка например третьего-ый столбец — на Каким методом лучше всего решать систему уравнений невысокого порядка например третьегои все эти произведения прибавим к первому столбцу, при этом произведение Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоне изменится:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Определение: Определитель Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоназывается первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоПроанализируем полученные формулы:

  • если главный определитель системы отличен от нуля (Каким методом лучше всего решать систему уравнений невысокого порядка например третьего), то система имеет единственное решение;
  • если главный определитель системы равен нулю (Каким методом лучше всего решать систему уравнений невысокого порядка например третьего), а хотя бы один из вспомогательных определителей отличен от нуля ( Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоили Каким методом лучше всего решать систему уравнений невысокого порядка например третьего, или, . или Каким методом лучше всего решать систему уравнений невысокого порядка например третьего), то система не имеет решений (деление на нуль запрещено);
  • если все определители системы равны нулю (Каким методом лучше всего решать систему уравнений невысокого порядка например третьего), то система имеет бесчисленное множество решений.

Пример:

Решить СЛАУ методом Крамера Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Найдем главный определитель СЛАУ (раскрываем по первой строке) Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Воспользуемся формулами Крамера

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоОтсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоматpицы-столбцы неизвестных Каким методом лучше всего решать систему уравнений невысокого порядка например третьегои свободных коэффициентов Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Тогда СЛАУ можно записать в матричном виде Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоМатричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Каким методом лучше всего решать систему уравнений невысокого порядка например третьегок матрице А, получим Каким методом лучше всего решать систему уравнений невысокого порядка например третьегов силу того, что произведение Каким методом лучше всего решать систему уравнений невысокого порядка например третьегонайдем Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоТаким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Каким методом лучше всего решать систему уравнений невысокого порядка например третьего после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Решение:

Введем в рассмотрение следующие матрицы Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Найдем матрицу Каким методом лучше всего решать систему уравнений невысокого порядка например третьего(см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Решение:

Найдем алгебраические дополнения всех элементов Каким методом лучше всего решать систему уравнений невысокого порядка например третьего Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоЗапишем обратную матрицу Каким методом лучше всего решать систему уравнений невысокого порядка например третьего(в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоПриведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоРазделим все элементы второй строки на (-5), получим эквивалентную матрицу Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоРазделим все элементы третьей строки на (-3), получим Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоТаким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоназывается наивысший порядок отличного от нуля минора этой матрицы.

Если Каким методом лучше всего решать систему уравнений невысокого порядка например третьегото среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Каким методом лучше всего решать систему уравнений невысокого порядка например третьегосреди миноров третьего порядка также есть миноры, которые не равны нулю, например, Каким методом лучше всего решать систему уравнений невысокого порядка например третьегоОчевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Каким методом лучше всего решать систему уравнений невысокого порядка например третьегодля определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Линейные уравнения. Решение систем линейных уравнений матричным методом.

Матричный метод решения СЛАУ применяют к решению систем уравнений, у которых количество уравнений соответствует количеству неизвестных. Метод лучше применять для решения систем низкого порядка. Матричный метод решения систем линейных уравнений основывается на применении свойств умножения матриц.

Этот способ, другими словами метод обратной матрицы, называют так, так как решение сводится к обычному матричному уравнению, для решения которого нужно найти обратную матрицу.

Матричный метод решения СЛАУ с определителем, который больше или меньше нуля состоит в следующем:

Предположим, есть СЛУ (система линейных уравнений) с n неизвестными (над произвольным полем):

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Значит, её легко перевести в матричную форму:

AX=B, где A — основная матрица системы, B и X — столбцы свободных членов и решений системы соответственно:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Умножим это матричное уравнение слева на A −1 — обратную матрицу к матрице A: A −1 (AX)=A −1 B.

Т.к. A −1 A=E, значит, X=A −1 B. Правая часть уравнения дает столбец решений начальной системы. Условием применимости матричного метода есть невырожденность матрицы A. Необходимым и достаточным условием этого есть неравенство нулю определителя матрицы A:

Для однородной системы линейных уравнений, т.е. если вектор B=0, выполняется обратное правило: у системы AX=0 есть нетривиальное (т.е. не равное нулю) решение лишь когда detA=0. Эта связь между решениями однородных и неоднородных систем линейных уравнений называется альтернатива Фредгольма.

Т.о., решение СЛАУ матричным методом производится по формуле Каким методом лучше всего решать систему уравнений невысокого порядка например третьего. Либо, решение СЛАУ находят при помощи обратной матрицы A −1 .

Известно, что у квадратной матрицы А порядка n на n есть обратная матрица A −1 только в том случае, если ее определитель ненулевой. Таким образом, систему n линейных алгебраических уравнений с n неизвестными решаем матричным методом только в случае, если определитель основной матрицы системы не равен нулю.

Не взирая на то, что есть ограничения возможности применения такого метода и существуют сложности вычислений при больших значениях коэффициентов и систем высокого порядка, метод можно легко реализовать на ЭВМ.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Пример решения неоднородной СЛАУ.

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Для начала проверим, не равен ли нулю определитель матрицы коэффициентов у неизвестных СЛАУ.

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Далее вычисляем алгебраические дополнения для элементов матрицы, которая состоит из коэффициентов при неизвестных. Эти коэффициенты нужны будут для вычисления обратной матрицы.

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Теперь находим союзную матрицу, транспонируем её и подставляем в формулу для определения обратной матрицы.

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Подставляем переменные в формулу:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Теперь находим неизвестные, перемножая обратную матрицу и столбик свободных членов.

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

При переходе от обычного вида СЛАУ к матричной форме будьте внимательными с порядком неизвестных переменных в уравнениях системы. Например:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

НЕЛЬЗЯ записать как:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Необходимо, для начала, упорядочить неизвестные переменные в кадом уравнении системы и только после этого переходить к матричной записи:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Кроме того, нужно быть внимательными с обозначением неизвестных переменных, вместо x1, x2, …, xn могут оказаться другие буквы. К примеру:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

в матричной форме записываем так:

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

Матричным методом лучше решать системы линейных уравнений, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы не равен нулю. Когда в системе более 3-х уравнений, на нахождение обратной матрицы потребуется больше вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Как решать систему уравнений

Каким методом лучше всего решать систему уравнений невысокого порядка например третьего

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:6 способов в одном видеоСкачать

6 способов в одном видео

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

🌟 Видео

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса
Поделиться или сохранить к себе: