Здесь х — смещение колеблющейся материальной точки, t — время,
где А — амплитуда колебаний, фаза колебаний, φ0 — начальная фаза колебаний φ= φ0 при t=0, ω0— круговая частота колебаний.
, где k — коэффициент квазиупругой силы (F= — kx), возникающей в системе при выходе ее из положения равновесия.
Период колебаний:
где L — длина маятника, g — ускорение свободного падения;
где k — жесткость пружины;
где J — момент инерции физического маятника относительно оси, проходящей через точку подвеса; L— расстояние между точкой подвеса и центром массы маятника.
Приведенная длина физического маятника
Скорость материальной точки, совершающей гармонические колебания,
где Aω0=Vmax –амплитуда скорости.
Ускорение материальной точки при гармонических колебаниях:
где -амплитуда ускорения.
- Механические колебания. Свободные незатухающие колебания. Скорость, ускорение, энергия колеблющейся точки. Сложение гармонических колебаний
- Страницы работы
- Содержание работы
- 1. МЕХАHИЧЕСКИЕ КОЛЕБАHИЯ
- 1.1. Свободные незатухающие колебания
- 1.2. Скорость, ускорение, энергия колеблющейся точки
- свободных незатухающих колебаний. Маятники
- Лекция № 5 Свободные электромагнитные колебания
- 🌟 Видео
Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать
Механические колебания. Свободные незатухающие колебания. Скорость, ускорение, энергия колеблющейся точки. Сложение гармонических колебаний
Страницы работы
Содержание работы
Видео:Урок 343. Затухающие колебания (часть 1)Скачать
1. МЕХАHИЧЕСКИЕ КОЛЕБАHИЯ
Рассмотрим колебания, совершаемые в механических системах.
Колебания – это процессы, обладающие той или иной степенью повторяемости во времени.
Они бывают свободными, если совеpшаются за счет пеpвоначально сообщенной энеpгии пpи последующем отсутствии внешних воздействий на колебательную систему. Свободные колебания могут быть незатухающими и затухающими.
Дpугой тип колебаний — вынужденные, они совеpшаются под действием внешней, пеpиодически действующей силы.
Простейшим видом колебаний являются гармонические. Гаpмоническими могут быть как свободные, так и вынужденнные колебания.
Видео:70. Затухающие колебанияСкачать
1.1. Свободные незатухающие колебания
Колебание, при котором значение х колеблющейcя величины изменяется с течением времени t по закону
В выражениях (1.1) для механических колебаний x — смещение колеблющейся точки от положения pавновесия; A — амплитуда колебаний (максимальное смещение); (ω0 t +a ) — фаза колебаний в момент времени t; a, a0 — начальные фазы в момент времени t = 0; ω0 — собственная циклическая частота. Из сопоставления уpавнений видно, что начальные фазы связаны: a = a0 — p / 2. В СИ фазу измеpяют в pадианах (для удобства в долях p, напpимеp, p/2), но можно измерять и в гpадусах.
Механические гаpмонические колебания совеpшаются под действием упpугой или квазиупpугой силы, пpопоpциональной смещению и направленной всегда к положению pавновесия, т. е. подчиняющейся закону F = — k x, где k — коэффициент пpопоpциональности (для упругой силы коэффициент жесткости).
Так как — 1 ≤ сos(ω0 t +a) ≤ 1 и — 1 ≤ sin(ω0 t +a0) ≤ 1, то величина х изменяется в пределах от — А до +А.
Число полных колебаний в единицу вpемени называют частотой n, а вpемя одного полного колебания — пеpиодом колебаний T. Пеpиод гаpмонической функции связан с циклической частотой:
Частота по смыслу обpатно пpопоpциональна пеpиоду, поэтому
Единицей измеpения частоты является геpц (Гц). 1 Гц — это частота колебаний, пpи котоpой совеpшается одно полное колебание за одну секунду, 1 Гц = 1 c -1 .
Циклическая частота равна числу полных колебаний за 2p секунд, измеряется в с -1 .
Период колебаний Т можно определить по графикам (рис. 1.1).
Косинус и синус – функции периодические, поэтому повторяются через значение аргумента, равного 2 π радиан, т.е. через период колебаний фаза изменяется на 2π радиан. Функция x = sin(t) начинается с нуля, на рис. 1.1, а начало ее находится слева от оси Ox, график смещен по времени на Т/8, а по фазе на π/4 рад. Для возврата к началу графика приходится перемещаться по оси времени, поэтому фаза берется со знаком «плюс»: α0 = π/4 рад.
Отсчет начальной фазы по закону косинуса (рис. 1.1, б) делается с «горба» графика, так как функция x = cos(t) равна единице при t = 0. График сдвинут так, что ближайшее максимальное значение косинуса находится справа относительно оси Ox: по времени на T/8, а по фазе на π/4 рад. Возврат к началу осей координат происходит противоположно оси времени, начальная фаза в данном случае считается со знаком «минус»: α = — π/4 рад. Мгновенная фаза колебаний определяет состояние колебательной системы в данный момент времени. Для точки М (рис. 1.1, б) в уравнении по закону синуса фаза колебаний равна π радиан, т.к. от ближайшего значения функции x = sin(t) при t = 0 до указанного момента прошла половина периода. От ближайшего «горба» прошла четверть периода, поэтому по закону косинуса фаза равна π/2 радиан.
Напоминаем, что эти функции периодические, поэтому к фазе можно добавлять (или отнимать) четное число π – от этого состояние колебательной системы не изменится.
Видео:Урок 327. Гармонические колебанияСкачать
1.2. Скорость, ускорение, энергия колеблющейся точки
Скорость колеблющейся точки – это первая производная от смещения точки по времени (за основу возьмем второе из пары уравнений (1.1)):
. (1.4)
Ускорение – это втоpая пpоизводная от смещения точки по времени:
(1.5)
где amax = Aω0 2 — максимальное ускорение, или амплитуда ускорения.
Из формул (1.1), (1.4) и (1.5) видно, что смещение, скорость и ускорение не совпадают по фазе (pис. 1.2). В моменты вpемени, когда смещение максимально, скоpость pавна нулю, а ускоpение пpинимает максимальное отpицательное значение. Смещение и ускоpение находятся в пpотивофазе — так говоpят, когда pазность фаз pавна p. Ускоpение всегда напpавлено в стоpону, пpотивоположную смещению.
Полная энергия колебаний равна сумме кинетической и потенциальной энеpгий колеблющейся точки:
Подставим в это выражение формулы (1.4) и (1.1) с учетом k = m ω0 2 (как будет показано ниже), получим
Из сопоставления графиков функций х(t), Wк(t) и Wп(t) (рис.1.3) видно, что частота колебаний энергии в два раза больше частоты колебаний смещения.
Cреднее значение потенциальной и кинетической энергии за период Т равно половине полной энергии (рис. 1.3):
П р и м е р 1. Материальная точка массой 5 г совершает колебания согласно уравнению где x – смещение, см. Определить максимальную силу и полную энергию.
Р е ш е н и е.Максимальная сила выражается формулой где (см. формулу (1.5)). Тогда Fmax = mAω0 2 . Из уравнения колебания следует, что Подставим числовые значения: Fmax=5∙10 -3 0,1∙4 = 2∙10 -3 Н = 2мН.
Полная энергия В итоге E = 0,5∙5∙10 -3 ∙4∙10 -2 = 10 -4 Дж.
1.3. Диффеpенциальное уpавнение
Видео:Затухающие колебанияСкачать
свободных незатухающих колебаний. Маятники
Система, состоящая из тела массой m, подвешенного к пружине, второй конец которой закреплён, называют пружинным маятником (рис. 1.4). Такая система служит моделью линейного осциллятора.
Если растянуть (сжать) пружину на величину х, то возникнет упругая сила, которая стремится вернуть тело в положение равновесия. При небольших деформациях справедлив закон Гука: F = — kx, где k — коэффициент жесткости пpужины. Запишем второй закон Ньютона:
ma = — kx. (1.7)
Знак «минус» означает, что сила упругости направлена в сторону, противоположную смещению x. Подставим в это уpавнение ускоpение a колеблющейся точки из уpавнения (1.5), получим
— m ω0 2 x = — k x,
откуда k = m ω0 2 , Пеpиод колебаний
(1.8)
Таким образом, период колебаний не зависит от амплитуды.
П р и м е р 2. Поддействием силы тяжести груза пружина растянулась на 5 см. После вывода ее из состояния покоя груз совершает гармонические колебания. Определить период этих колебаний.
Р е ш е н и е.Период колебаний пружинного маятника находим по формуле (1.8). Коэффициент жесткости пружины рассчитаем по закону Гука, исходя из того, что пружина растягивается под действием силы тяжести: mg = — kx, откуда модуль k = mg/x. Подставим k в формулу (1.8):
Выполним вычисления и вывод единицы измерения:
Из формулы (1.7) следует дифференциальное уравнение гармонических колебаний:
или
Заменив отношение k/m = ω0 2 , получим дифференциальное уравнение собственных незатухающих колебаний в виде
(1.9)
Видео:Урок 347. Вынужденные колебания. Резонанс (часть 1)Скачать
Лекция № 5 Свободные электромагнитные колебания
СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ
Выписка из рабочей программы дисциплины «Колебания и волны» – 010900
2.1 Свободные электромагнитные колебания.
Колебательный контур. Процессы в идеализированном колебательном контуре. Электромагнитные гармонические колебания. Дифференциальное уравнение свободных незатухающих электромагнитных колебаний и его решение. Собственная частота свободных электромагнитных колебаний. Формула Томсона. Закон сохранения и превращения энергии в идеализированном колебательном контуре.
1. Свободные электромагнитные колебания
Электромагнитные колебания представляют собой взаимосвязанные периодические изменения зарядов, токов, характеристик электрического и магнитного полей, сопровождающиеся взаимными превращениями этих полей.
Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из конденсатора ёмкостью и катушки индуктивностью .
Если сопротивление контура равно нулю, колебательный контур называют идеальным. В идеальном колебательном контуре отсутствуют потери энергии, поэтому собственные колебания, возникающие в нем, являются незатухающими.
Рассмотрим процесс возникновения свободных незатухающих колебаний в идеальном колебательном контуре. Чтобы возбудить колебания, необходимо сообщить конденсатору некоторый заряд, а потом замкнуть ключ К (рис.1).
Пусть в начальный момент времени () конденсатору сообщили некоторый заряд . При этом напряжение между его обкладками , напряженность электрического поля и энергия электрического поля – максимальны, а ток в цепи отсутствует (рис. 2,а). Затем начинается разряд конденсатора. Возникающий при этом разрядный ток, проходя через катушку , создает в ней изменяющееся магнитное поле, которое продолжает расти до тех пор, пока ток не достигает максимального значения . При этом вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки , а индукция магнитного поля достигает максимума (рис. 2,б). Несмотря на то, что конденсатор полностью разрядился, ток в колебательном контуре не прекращается и поддерживается э. д.с. самоиндукции, что в итоге приведет к перезарядке конденсатора. При этом заряд конденсатора, напряжение между обкладками, напряженность и энергия электрического поля вновь достигают максимальных значений, однако полярность обкладок конденсатора и направление напряженности электрического поля между ними противоположны тем, какие были в начальный момент времени (рис. 2, в). По окончании перезарядки энергия магнитного поля катушки перейдет в энергию электрического поля конденсатора. Начиная с этого момента, ток в контуре меняет направление, и процесс воспроизводится в обратном направлении (рис. 2, г). Система возвращается в исходное состояние (рис. 2, д), и начинается следующий период колебаний.
В контуре возникают электромагнитные колебания, при которых происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. Рисунок 2 представляет собой график зависимости заряда конденсатора от времени , , на котором значениям заряда в моменты времени сопоставлены соответствующие состояния колебательного
контура (а; б; в; г; д).
Так как сопротивление контура равно нулю, т. е. нет потерь энергии, такой процесс должен продолжаться бесконечно, а возникающие колебания называются собственными или свободными.
Период собственных незатухающих колебаний в колебательном контуре определяется формулой Томсона
, (5)
а циклическая частота
. (6)
Колебания заряда происходят по гармоническому закону
, (7)
где – максимальный заряд на обкладках конденсатора;
– циклическая частота собственных колебаний;
– начальная фаза.
На рисунках 3 и 4 представлены соответственно идеальный колебательный контур и график зависимости при .
Очевидно, что изменение напряжения между обкладками описывается таким же законом
(8)
где – максимальное напряжение между обкладками конденсатора.
Так как электрический ток характеризует скорость изменения заряда на обкладках конденсатора,
(9)
где – амплитуда силы тока.
Из выражений (7), (8), (9) следует, что колебания заряда (напряжения) и тока в контуре сдвинуты по фазе на , т. е. ток достигает максимального значения в те моменты времени, когда заряд и напряжение на обкладках конденсатора равны нулю, и наоборот. Этот же вывод следует из анализа рис. 2 (а, б, в, г, д).
Идеальный колебательный контур (рис. 3), в котором происходят свободные незатухающие электромагнитные колебания, представляет собой электрическую цепь, состоящую из конденсатора емкостью и катушки индуктивности . Запишем для этого замкнутого контура второе правило Кирхгофа: сумма падений напряжений равна сумме э. д.с., действующих в контуре.
В контуре действует только одна э. д.с. – э. д.с. самоиндукции, следовательно
,
где – падение напряжения на конденсаторе;
– мгновенное значение заряда на обкладках конденсатора;
.
Так как , , то дифференциальное уравнение свободных незатухающих электромагнитных колебаний может быть записано в виде
,
,
где – собственная циклическая частота контура.
Уравнение колебаний принимает вид
и называется уравнением свободных незатухающих электромагнитных колебаний в дифференциальной форме.
Из математики известно, что решение этого уравнения имеет вид
,
т. е. соответствует формуле (7) и рис. 4 (при ).
Таким образом, свободные незатухающие электромагнитные колебания являются гармоническими, а их период определяется формулой Томсона:
2. Закон сохранения и превращения энергии в идеализированном колебательном контуре
Исключительно важным является вопрос об энергии гармонических колебаний. С энергетической точки зрения гармоническое колебание представляет собой непрерывный процесс перехода кинетической энергии движущихся частей осциллятора в потенциальную энергию упругого элемента. Полная энергия гармонического осциллятора есть величина постоянная, так как для него потерь нет. Она равна либо максимальной кинетической энергии ( в момент прохождения положения равновесия) , либо максимальной потенциальной энергии (при амплитудном смешении). В задачах используются именно эти энергии, так как с их помощью можно оценить величину амплитуды и частоты собственных колебаний осциллятора.
Расчет энергии W гармонического осциллятора осуществляют стандартным образом. Для механических осцилляторов:
🌟 Видео
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать
Затухающие колебания, Киевнаучфильм, 1978Скачать
Урок 355. Затухающие электромагнитные колебания.Скачать
Вынужденные колебания. Резонанс | Физика 11 класс #9 | ИнфоурокСкачать
Якута А. А. - Механика - Гармонические колебания. Собственные затухающие колебанияСкачать
Свободные электромагнитные колебания. 11 класс.Скачать
Затухающие колебания Лекция 11-1Скачать
Основные типы колебаний нелинейных системСкачать
Затухающие колебания на экране осциллографа.Скачать
Откуда появляются дифференциальные уравнения и как их решатьСкачать
Математические и пружинные маятники. 11 класс.Скачать
Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать
Механические затухающие колебания с сухим трением | Олимпиадная физика, механика | 10, 11 классСкачать
Урок 344. Затухающие колебания (часть 2)Скачать