Какие уравнения не являются дробно рациональными

Дробно-рациональные уравнения

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Видео:Дробно рациональные уравнения. Алгебра, 9 классСкачать

Дробно рациональные уравнения. Алгебра, 9 класс

Решение дробно-рациональных уравнений

Решение дробно-рациональных уравнений

Если вы ученик восьмого класса, и вдруг случилось так, что вы пропустили урок или пропустили мимо ушей то, о чем говорил учитель, эта статья для вас!

А эти уравнения не являются дробно-рациональными:

Два последних уравнения точно не относятся к дробно-рациональным, несмотря на то, что они состоят из дробей. Но самое важное, что в знаменателе нет переменной (буквы). А вот в дробно-рациональном уравнении в знаменателе всегда есть переменная.

Итак, после того, как вы верно определили, какое именно епред вами уранвение, начнем его решать. Первое, что нужно сделать, обозначается тремя большими буквами, О.Д.З. Что же означают эти буквы? О бласть Д опустимых З начений. Что это означает в науке математике, сейчас объяснять не буду, наша цель научиться решать уравнения, а не повторить тему «Алгебраические дроби». А вот для нашей цели это означает следующее: мы берем знаменатель или знаменатели наших дробей, выписываем их отдельно и отмечаем, что они не равны нулю.

Почему не указали множитель 2? Так ясно же, что 2≠0

Видео:Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

Решение дробных рациональных уравнений. Алгебра, 8 класс

Решение рациональных уравнений

Вы будете перенаправлены на Автор24

Рациональные уравнения — это уравнения, содержащие в себе рациональные выражения.

Рациональными выражениями при этом являются выражения, которые возможно записать в виде обыкновенной дроби вида $frac$, при этом $m$ и $n$ — целые числа и $n$ не может быть равно нулю. К рациональным выражениям относятся не только выражения, содержащие дроби вида $frac$, но и выражения, содержащие только целые числа, так как любое целое число можно представить в виде неправильной дроби.

Теперь рассмотрим более подробно, что же такое рациональные уравнения.

Как мы уже упомянули выше, рациональные уравнения — это уравнения, содержащие в себе рациональные выражения и переменные.

Соответственно тому, на каком именно месте стоит переменная в рациональном уравнении, оно может быть либо дробным рациональным уравнением, либо целым рациональным уравнением.

Дробные уравнения могут содержать дробь с переменной только в какой-то одной части уравнения, тогда как целые уравнения не содержат дробных выражений с переменной.

Целые рациональные уравнения примеры: $5x+2= 12$; $3y=-7(-4y + 5)$; $7a-14=256$.

Дробно-рациональные уравнения примеры: $frac+frac=frac$; $frac=5$;

Стоит отметить, что дробно-рациональными уравнениями называются только уравнения, содержащие дробь в знаменателе, так как уравнения, содержащие дробные выражения без переменных, легко сводятся к линейным целым уравнениям.

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Как решать рациональные уравнения?

В зависимости от того, имеете ли вы дело с целым рациональным уравнением или с дробным, применяются несколько разные алгоритмы для решения.

Алгоритм решения целых рациональных уравнений

  1. В начале необходимо определить наименьший общий знаменатель для всего равенства.
  2. Затем нужно определить множители, на которые нужно домножить каждый член равенства.
  3. Следующий этап — приведение к общему знаменателю всего равенства.
  4. Наконец, осуществление поиска корней полученного целого рационального равенства.

Готовые работы на аналогичную тему

Сначала найдём общий множитель — в данном случае это число $4$. Для того чтобы избавиться от знаменателя, домножим левую часть на $frac$, получаем:

$10x+18=x$ — полученное уравнение является линейным, его корень $x=-2$.

Как решать дробно-рациональные уравнения?

В случае с дробными рациональными уравнениями порядок решения похож на алгоритм для решения целых рациональных, то есть сохраняются пункты 1-4, но после нахождения предполагаемых корней в случае использования неравносильных преобразований корни требуется проверить, подставив в уравнение.

Решите дробно-рациональное уравнение: $frac+frac=frac$

Для того чтобы привести дробь к общему знаменателю, здесь это $x cdot (x-5)$, домножим каждую дробь на единицу, представленную в виде необходимого для приведения к общему знаменателю множителя:

Теперь, когда вся дробь имеет общий знаменатель, от него можно избавиться:

Воспользуемся теоремой Виета для решения получившегося квадратного уравнения:

$begin x_1 + x_2 = 3 \ x_1 cdot x_2 = -10 \ end$

Так как преобразование, использовавшееся для упрощения уравнения, не является равносильным, полученные корни необходимо проверить в исходном уравнении, для этого подставим их:

$frac=frac$ — следовательно, корень $x_2=-2$ — верный.

Здесь сразу видно, что в знаменателе образуется нуль, следовательно, корень $x_1=5$ — посторонний.

Необходимо помнить, что в случае, если уравнение, содержащее в левой или правой части выражение вида $frac$ равно нулю, равен нулю может быть только числитель дроби. Это происходит из-за того, что, если где-то в знаменателе образуется нуль, проверяемый корень не является корнем уравнения, так как всё равенство теряет смысл в этом случае. Корни, приводящие знаменатель к нулю, называются посторонними.

В случае если дробно-рациональное уравнение имеет довольно сложную форму, для его дальнейшего упрощения и решения возможно использовать замену части уравнения на новую переменную, наверняка вы уже видели примеры таких дробно-рациональных уравнений:

Для упрощения решения введём переменную $t= x^2+3x$:

Общий знаменатель здесь $5 cdot (t-3)(t+1)$, домножим на необходимые множители все части уравнения чтобы избавиться от него:

Через дискриминант вычислим корни:

Так как мы использовали неравносильные преобразования, необходимо проверить полученные корни в знаменателе, они должны удовлетворять условию $5(t-3)(t+1)≠0$. Оба корня соответствуют этому условию.

Теперь подставим полученные корни вместо $t$ и получим два уравнения:

По теореме Виета корни первого уравнения $x_1=-4; x_2=1$, корни второго же вычислим через дискриминант и имеем $x_=frac<-3±sqrt<frac>>$.

Все корни уравнения составят: $x_1=-4; x_2=1, x_=frac<-3±sqrt<frac>>$.

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

Преобразования для упрощения формы уравнения

Как вы уже могли увидеть выше, для решения рациональных уравнений используют различные преобразования.

Различают преобразования уравнений двух видов: равносильные (тождественные) и неравносильные.

Преобразования называются равносильными, если они приводят к уравнению нового вида, корни которого такие же, как у первоначального.

Тождественные преобразования, которые можно использовать для изменения вида первоначального уравнения без каких-либо проверок в дальнейшем, следующие:

  • Умножение или деление всего уравнения на какое-либо число, отличное от нуля;
  • Перенос частей уравнения из левой части в правую и наоборот.

Неравносильными преобразованиями называются преобразования, в ходе которых могут появиться посторонние корни. К неравносильным преобразованиям относят:

  • Возведение обеих частей уравнения в квадрат;
  • Избавление от знаменателей, содержащих переменную;

Корни рациональных уравнений, решённых с помощью неравносильных преобразований, необходимо проверять подстановкой в исходное уравнение, так как при неравносильных преобразованиях могут появиться посторонние корни. Не всегда неравносильные преобразования приводят к появлению посторонних корней, но всё же необходимо это учитывать.

Видео:Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.

Решение рациональных уравнений со степенями больше двух

Наиболее часто используемыми методами для решения уравнений со степенями больше двух являются метод замены переменной, рассмотренный нами выше на примере дробно-рационального уравнения, а также метод разложения на множители.

Рассмотрим более подробно метод разложения на множители.

Пусть дано уравнение вида $P(x)= 0$, при этом $P(x)$ — многочлен, степень которого больше двух. Если данное уравнение возможно разложить на множители так, что оно принимает вид $P_1(x)P_2(x)P_3(x)..cdot P_n(x)=0$, то решением данного уравнения будет множество решений уравнений $P_1(x)=0, P_2(x)=0, P_3(x)=0. P_n(x)=0$.

Решите уравнение: $x^3+2x^2+3x+6=0$

Вынесем общие множители:

После разложения на множители нужно решить уравнения $x+2=0$ и $x^2+3=0$. Корень первого $x=-2$, второе уравнение корней не имеет, поэтому $x=-2$ — в данном случае окончательный ответ.

Уравнения, в которых коэффициент при переменной со старшей степенью равен единице, называются приведёнными.

Для приведённых уравнений справедливо следующее:

Если такое уравнение с целыми коэффициентами при переменных имеет рациональный корень, то этот корень непременно является целым числом.

Благодаря такому свойству этих уравнений их можно решать перебором целых делителей свободного члена.

Для тех, кто не помнит: свободный член уравнения — это член уравнений, не содержащий при себе в качестве множителя переменную. При этом найдя один из корней такого уравнения, его можно использовать для дальнейшего разложения уравнения на множители.

Делителями свободного члена будут числа $±1, ±2, ±3, ±4, ±6, ±8, ±12$ и $±24$. При их проверке подходящим корнем оказался $x=2$. Это значит, что данный многочлен можно разложить с использованием этого корня: $(x-2)(x^2+6+12)=0$.

Многочлен во второй паре скобок корней не имеет корней, значит, единственным корнем данного уравнения будет $x=2$.

Другим типом уравнений со степенью больше двух являются биквадратные уравнения вида $ax^4+bx^2+ c=0$. Такие уравнения решаются путём замены $x^2$ на $y$, применив её, получаем уравнение вида $ay^2+y+c=0$, а после этого полученное значение новой переменной используют для вычисления исходной переменной.

Также существует ещё один тип уравнений, называемый возвратным. Такие уравнения выглядят так: $ax^4+bx^3+cx^2+bx+a=0$. Такое название они имеют из-за повторения коэффициентов при старших степенях и младших.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 05 03 2021

📽️ Видео

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)Скачать

Алгебра 8 класс (Урок№31 - Решение дробных рациональных уравнений.)

Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 61 часть. 9 класс.

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать

Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴

Зачётный способ решить дробно рациональное уравнение методом заменыСкачать

Зачётный способ решить дробно рациональное уравнение методом замены

Дробно-рациональные уравнения. Подготовка к экзаменам. 57 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 57 часть. 9 класс.

Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)Скачать

Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)

Рациональные дроби. Видеоурок по алгебре за 8 класс.Скачать

Рациональные дроби. Видеоурок по алгебре за 8 класс.

#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать

#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать

Дробно-рациональные уравнения + Бонус: треугольник Паскаля | Математика

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США
Поделиться или сохранить к себе: