Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const

Блог об энергетике

Видео:мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процессСкачать

мкт ИЗОТЕРМИЧЕСКИЙ процесс ИЗОХОРНЫЙ процесс ИЗОБАРНЫЙ процесс

энергетика простыми словами

Видео:Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)Скачать

Эта тема ВСЕГДА встречается на экзамене ЦТ — Изопроцессы (Физика для чайников)

Основные термодинамические процессы

Основными процессами в термодинамике являются:

  • изохорный, протекающий при постоянном объеме;
  • изобарный, протекающий при постоянном давлении;
  • изотермический, происходящий при постоянной температуре;
  • адиабатный, при котором теплообмен с окружающей средой отсутствует;
  • политропный, удовлетворяющий уравнению pv n = const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в pv иTs координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const Какая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt const

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT) следует:

т. е. давление газа прямо пропорционально его абсолютной температуре:

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при cv = const определяется по формуле:

Т. к.l = 0, то на основании первого закона термодинамики Δu = q, а значит изменение внутренней энергии можно определить по формуле:

Изменение энтропии в изохорном процессе определяется по формуле:

Изобарный процесс

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt const

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

Количество теплоты при cp = const определяется по формуле:

Изменение энтропии будет равно:

Изотермический процесс

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt const

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

Адиабатный процесс

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt constКакая величина не является постоянной в изохорном процессе описываемом уравнением pt const

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через cад, и условие dq = 0 выразим следующим образом:

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (cад = 0).

и уравнение кривой адиабатного процесса (адиабаты) в p, v-диаграмме имеет вид:

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

kвыхлопных газов ДВС = 1,33

Из предыдущих формул следует:

Техническая работа адиабатного процесса (lтехн) равна разности энтальпий начала и конца процесса (i1 i2).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным. В T, s-диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом.

Политропный процесс

Политропным называется процесс, который описывается уравнением:

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p, vи Tв любых двух точках на политропе:

Работа расширения газа в политропном процессе равна:

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const

В случае идеального газа эту формулу можно преобразовать:

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const

представляет собой теплоемкость идеального газа в политропном процессе.

При cv, k и n = const cn = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p, v координатах в зависимости от показателя политропа n.

Какая величина не является постоянной в изохорном процессе описываемом уравнением pt const

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

n > 0 – гиперболические кривые,

n По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

Видео:Урок 157. Изопроцессы и их графики. Частные газовые законыСкачать

Урок 157. Изопроцессы и их графики. Частные газовые законы

Изопроцессы в газах.

Изопроцессами называются процессы, протекающие при неизменном значении одного из па­раметров: давления (p), объема (V), температуры (T).

Изопроцессами в газах являются термодинамические процессы, на протяжении течения которых количество вещества и давление, объём, температура либо энтропия не поддаются изменениям. Таким образом, при изобарном процессе не изменяется давление, при изохорном — объём, при изотермическом — температура, при изоэнтропийном — энтропия (к примеру, обратимый адиабатический процесс). И линии, которые отображают перечисленные процессы на некой термодинамической диаграмме, называют, соответственно, изобара, изохора, изотерма и адиабата. Все эти изопроцессы являются частными случаями политропного процесса.

В идеальном газе эти процессы подчиняются газовым законам.

Газовыми законами называются количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра.

Видео:Подготовка к ЕГЭ. Вычерчиваем графики изопроцессов без формул.Скачать

Подготовка к ЕГЭ. Вычерчиваем графики изопроцессов без формул.

Изобарный процесс.

Изобарный (или изобарический) процесс — это изменение термодинамической системы с условием не изменения давления (P = const). Изобарой называют линию, которая отображает изобарический процесс на графике. Этот процесс описывает закон Гей-Люссака.

Видео:Физика Изучение графиков изопроцессовСкачать

Физика Изучение графиков изопроцессов

Изохорный процесс.

Изохорный (или изохорический) процесс — это изменение термодинамической системы с условием не изменения объема (V = const). Изохорой называют линию, которая отображает изохорический процесс на графике. Этот процесс описывает закон Шарля.

Видео:Изопроцессы. Подготовка к ЕГЭ по Физике. Николай Ньютон. ТехноскулСкачать

Изопроцессы. Подготовка к ЕГЭ по Физике. Николай Ньютон. Техноскул

Изотермический процесс.

Изотермический процесс — это изменение термодинамической системы с условием не изменения температуры (T = const). Изотермой называют линию, которая отображает изотермический процесс на графике. Этот процесс описывает закон Бойля-Мариотта.

Видео:Урок 146. Основное уравнение МКТ идеального газа - 2Скачать

Урок 146. Основное уравнение МКТ идеального газа - 2

Изоэнтропийный процесс.

Изоэнтропийный процесс — это изменение термодинамической системы с условием не изменения энтропии (S = const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

где γ — показатель адиабаты, определяемый типом газа.

Видео:Тема 6. Изотермический, изобарный и изохорный процессы изменения состояния идеального газаСкачать

Тема 6. Изотермический, изобарный и изохорный процессы изменения состояния идеального газа

Основы теплотехники

Видео:Активная, реактивная и полная мощность. Что это такое, на примере наглядной аналогии.Скачать

Активная, реактивная и полная мощность. Что это  такое, на примере наглядной аналогии.

Термодинамические процессы

Как упоминалось в предыдущей статье, термодинамическим процессом называют изменение состояния системы, в результате которого хотя бы один из ее параметров (температура, объем или давление) изменяет свое значение. Впрочем, если учесть, что все параметры термодинамической системы неразрывно взаимосвязаны, то изменение любого из них неизбежно влечет изменение хотя бы одного (в идеале) или нескольких (в реальности) параметров. В общем случае можно сказать, что термодинамический процесс связан с нарушением равновесия системы, и если система находится в равновесном состоянии, то никаких термодинамических процессов в ней протекать не может.

Равновесное состояние системы — понятие абстрактное, поскольку невозможно изолировать что-либо материальное от окружающего мира, поэтому в любой реальной системе неизбежно протекают разнообразные термодинамические процессы. При этом в некоторых системах могут иметь место настолько медленные, почти незаметные изменения, что связанные с ними процессы можно условно считать состоящими из последовательности равновесных состояний системы. Такие процессы называют равновесными или квазистатическими .
Еще один возможный сценарий последовательных изменений в системе, после которых она возвращается к исходному состоянию, называют круговым процессом или циклом . Понятия равновесного и кругового процесса лежат в основе многих теоретических выводов и прикладных приемов термодинамики.

Изучение термодинамического процесса заключается в определении работы, совершенной в данном процессе, изменения внутренней энергии, количества теплоты, а также в установлении связи между отдельными величинами, характеризующими состояние газа.

Из всех возможных термодинамических процессов наибольший интерес представляют изохорный , изобарный , изотермический , адиабатный и политропный процессы.

Изохорный процесс

Изохорным называют термодинамический процесс, протекающий при постоянном объеме. Такой процесс может совершаться при нагревании газа, помещенного в закрытый сосуд. Газ в результате подвода теплоты нагревается, и его давление возрастает.
Изменение параметров газа в изохорном процессе описывает закон Шарля: p1/T1 = p2/T2 , или в общем случае:

Давление газа на стенки сосуда прямо пропорционально абсолютной температуре газа.

Так как в изохорном процессе изменение объема dV равно нулю, то можно сделать вывод, что вся подведенная к газу теплота расходуется на изменение внутренней энергии газа (никакая работа не совершается) .

Изобарный процесс

Изобарным называют термодинамический процесс, протекающий при постоянном давлении. Такой процесс можно осуществить, поместив газ в плотный цилиндр с подвижным поршнем, на который действует постоянная внешняя сила при отводе и подводе теплоты.
Какая величина не является постоянной в изохорном процессе описываемом уравнением pt constПри изменении температуры газа поршень перемещается в ту или иную сторону; при этом объем газа изменяется в соответствии с законом Гей-Люссака:

Это означает, что в изобарном процессе объем занимаемый газом, прямо пропорционален температуре.
Можно сделать вывод, что изменение температуры в этом процессе неизбежно приведет к изменению внутренней энергии газа, а изменение объема связано с выполнением работы, т. е. при изобарном процессе часть тепловой энергии тратится на изменение внутренней энергии газа, а другая часть – на выполнение газом работы по преодолению действия внешних сил. При этом соотношение между затратами теплоты на увеличение внутренней энергии и на выполнение работы зависит от теплоемкости газа.

Изотермический процесс

Изотермическим называют термодинамический процесс, протекающий при неизменной температуре.
Практически осуществить изотермический процесс с газом очень трудно. Ведь необходимо соблюсти условие, чтобы в процессе сжатия или расширения газ успевал обмениваться температурой с окружающей средой, поддерживая собственную температуру постоянной.
Изотермический процесс описывается законом Бойля-Мариотта: pV = const , т. е. при постоянной температуре величина давления газа обратно пропорциональна его объему.

Очевидно, что при изотермическом процессе внутренняя энергия газа не изменяется, поскольку его температура постоянна.
Чтобы выполнялось условие постоянства температуры газа, от него необходимо отводить теплоту, эквивалентную работе, затраченной на сжатие:

Используя уравнение состояния газа, проделав ряд преобразований и подстановок, можно сделать вывод, что работа газа при изотермическом процессе определяется выражением:

Адиабатный процесс

Адиабатным называют термодинамический процесс, протекающий без теплообмена рабочего тела с окружающей средой. Подобно изотермическому, осуществить на практике адиабатный процесс очень сложно. Такой процесс может протекать с рабочим телом, помещенным в сосуд, например, цилиндр с поршнем, окруженный высококачественным теплоизолирующим материалом.
Но какой бы качественный теплоизолятор мы не применяли в данном случае, некоторым, пусть даже ничтожно малым, количеством теплоты рабочее тело и окружающая среда неизбежно будут обмениваться.
Поэтому на практике можно создать лишь приближенную модель адиабатного процесса. Тем не менее, многие термодинамические процессы, осуществляемые в теплотехнике, протекают настолько быстро, что рабочее тело и среда не успевают обмениваться теплотой, поэтому с некоторой степенью погрешности такие процессы можно рассматривать как адиабатные.

Для вывода уравнения, связывающего давление и объем 1 кг газа в адиабатном процессе, запишем уравнение первого закона термодинамики:

Поскольку для адиабатного процесса теплопередача dq равна нулю, а изменение внутренней энергии есть функция теплопроводности от температуры: du = cvdT , то можно записать:

Продифференцировав уравнение Клапейрона pv = RT , получим:

Выразим отсюда dT и подставим в уравнение (3) . После перегруппировки и преобразований получим:

С учетом уравнения Майера R = cp – cv последнее выражение можно переписать в виде:

Разделив полученное выражение на cv и обозначив отношение cp/cv буквой k , после интегрирования уравнения (4) получим (при k = const) :

ln vk + ln p = const или ln pvk = const или pvk = const .

Полученное уравнение является уравнением адиабатного процесса, в котором k – показатель адиабаты.
Если предположить, что объемная теплоемкость cv является величиной постоянной, т. е. cv = const , то работу адиабатного процесса можно представить в виде формулы (приводится без вывода) :

Политропный процесс

В отличие от рассмотренных выше термодинамических процессов, когда какой-либо из параметров газа оставался неизменным, политропный процесс характеризуется возможностью изменения любого из основных параметров газа. Все рассмотренные выше термодинамические процессы являются частными случаями политропных процессов.
Общее уравнение политропного процесса имеет вид pv n = const , где n – показатель политропы — постоянная для данного процесса величина, которая может принимать значения от — ∞ до + ∞ .

Очевидно, что придавая показателю политропы определенные значения, можно получить тот или иной термодинамический процесс – изохорный, изобарный, изотермический или адиабатный.
Так, если принять n = 0 , получим p = const – изобарный процесс, если принять n = 1 , получим изотермический процесс, описываемый зависимостью pv = const ; при n = k процесс является адиабатным, а при n равном — ∞ или + ∞ . мы получим изохорный процесс.

Так как уравнение политропы по своему содержанию аналогично уравнению адиабатного процесса, то формулы, устанавливающие связь между параметрами политропного процесса будут аналогичны таковым для адиабатного процесса с той лишь разницей, что показатель адиабаты k нужно заменить на показатель политропы n .
Тогда:

Работа газа при политропном процессе может быть определена по формуле:

Теплоемкость при политропном процессе (приводится без вывода) :

Скачать теоретические вопросы к экзаменационным билетам
по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план
по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

💡 Видео

Урок 194. Уравнение Ван-дер-ВаальсаСкачать

Урок 194. Уравнение Ван-дер-Ваальса

Изопроцессы наглядностьСкачать

Изопроцессы наглядность

Урок 34 (осн). Сила упругости. Закон ГукаСкачать

Урок 34 (осн). Сила упругости. Закон Гука

Урок 195. Изотермы реального газаСкачать

Урок 195. Изотермы реального газа

Оценка неопределенности результатов измеренийСкачать

Оценка неопределенности результатов измерений

Лекция №8 "Эффект Джоуля-Томсона. Элементы теории вероятностей"Скачать

Лекция №8 "Эффект Джоуля-Томсона. Элементы теории вероятностей"

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)Скачать

Уравнение Ван-дер-Ваальса | Газы.Молекулярно-кинетическая теория | Химия (видео 8)

Определение расстояния по угловой величинеСкачать

Определение расстояния по угловой величине

Отравление фосфорорганическими веществамиСкачать

Отравление фосфорорганическими веществами

Средства измерений, их классификацияСкачать

Средства измерений, их классификация
Поделиться или сохранить к себе: