Как задать уравнение окружности с центром не в начале координат

Видео:№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать

№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Как задать уравнение окружности с центром не в начале координат

Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

Как задать уравнение окружности с центром не в начале координатили 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Как задать уравнение окружности с центром не в начале координат

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Как задать уравнение окружности с центром не в начале координат

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Уравнение окружности.

Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.

В формулировке окружности упоминается расстояние между точкой окружности и центром.

Формула расстояния между двумя точками М11; у1) и М22; у2) имеет вид:

Как задать уравнение окружности с центром не в начале координат,

Как задать уравнение окружности с центром не в начале координат

Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.

Как задать уравнение окружности с центром не в начале координат

Отметим произвольную точку М(х; у) на этой окружности.

Как задать уравнение окружности с центром не в начале координат.

Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.

Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .

Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:

В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):

Видео:Уравнение окружности с центром на оси абсцисс, ординат или в начале координат. Урок 3. Геометрия 8.Скачать

Уравнение окружности с центром на оси абсцисс, ординат или в начале координат. Урок 3. Геометрия 8.

Декартовы координаты точек плоскости. Уравнение окружности

Как задать уравнение окружности с центром не в начале координатЧисловая ось
Как задать уравнение окружности с центром не в начале координатПрямоугольная декартова система координат на плоскости
Как задать уравнение окружности с центром не в начале координатФормула для расстояния между двумя точками координатной плоскости
Как задать уравнение окружности с центром не в начале координатУравнение окружности на координатной плоскости

Как задать уравнение окружности с центром не в начале координат

Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Как задать уравнение окружности с центром не в начале координат

Доказательство . Рассмотрим рисунок 6.

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

Как задать уравнение окружности с центром не в начале координат

что и требовалось доказать.

Видео:№965. Напишите уравнения окружностей с центром в начале координат и радиусами r1=3, r2= √2 , r3=5/2.Скачать

№965. Напишите уравнения окружностей с центром в начале координат и радиусами r1=3, r2= √2 , r3=5/2.

Уравнение окружности на координатной плоскости

Как задать уравнение окружности с центром не в начале координат

Как задать уравнение окружности с центром не в начале координат

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

📽️ Видео

9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Уравнение окружности ? Окружность в системе координат / Функция окружностиСкачать

Уравнение окружности ? Окружность в системе координат / Функция окружности

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать

ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение Окружности

Уравнение окружностиСкачать

Уравнение окружности

№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известноСкачать

№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известно

Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать

Составить уравнение окружности. Геометрия. Задачи по рисункам.

№969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5),Скачать

№969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5),

№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известноСкачать

№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известно

№966. Напишите уравнение окружности радиуса r с центром А, если: а) А(0;5), r= 3; б) А(-1;2), r = 2Скачать

№966. Напишите уравнение окружности радиуса r с центром А, если: а) А(0;5), r= 3; б) А(-1;2), r = 2

УРАВНЕНИЕ ОКРУЖНОСТИ | 9 класс Алимов | задачи 447 455Скачать

УРАВНЕНИЕ ОКРУЖНОСТИ | 9 класс Алимов | задачи 447 455

Составляем уравнение окружностиСкачать

Составляем уравнение окружности
Поделиться или сохранить к себе: