Как выяснить имеет ли решение система уравнений и сколько

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Содержание
  1. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
  2. Немного теории.
  3. Решение систем линейных уравнений. Способ подстановки
  4. Решение систем линейных уравнений способом сложения
  5. Как решать систему уравнений
  6. Основные понятия
  7. Линейное уравнение с двумя переменными
  8. Система двух линейных уравнений с двумя переменными
  9. Метод подстановки
  10. Пример 1
  11. Пример 2
  12. Пример 3
  13. Метод сложения
  14. Система линейных уравнений с тремя переменными
  15. Решение задач
  16. Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
  17. Задание 2. Как решать систему уравнений способом подстановки
  18. Задание 3. Как решать систему уравнений методом сложения
  19. Задание 4. Решить систему уравнений
  20. Задание 5. Как решить систему уравнений с двумя неизвестными
  21. Исследование системы линейных уравнений с двумя переменными на количество решений
  22. 💡 Видео

Видео:Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Немного теории.

Видео:Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать

Система уравнений не имеет решений или имеет бесчисленное множество решений

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Количество решений системы линейных уравненийСкачать

Количество решений системы линейных уравнений

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Как решать систему уравнений

Как выяснить имеет ли решение система уравнений и сколько

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:Исследование систем линейных уравнений на совместностьСкачать

Исследование систем линейных уравнений на совместность

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Видео:Количество решений системы уравнений. УпражнениеСкачать

Количество решений системы уравнений. Упражнение

Исследование системы линейных уравнений с двумя переменными на количество решений

Разделы: Математика

Цель урока: сформировать умение по виду системы двух линейных уравнений с двумя переменными определять количество решений системы.

Задачи:

  • Образовательные:
    • повторить способы решения систем линейных уравнений;
    • связать графическую модель системы с количеством решений системы;
    • найти связь между соотношением коэффициентов при переменных в системе и количеством решений.
  • Развивающие:
    • формировать способности к самостоятельным исследованиям;
    • развивать познавательный интерес учащихся;
    • развивать умение выделять главное, существенное.
  • Воспитательные:
    • воспитывать культуру общения; уважение к товарищу, умение достойно вести себя. закреплять навыки работы в группе;
    • формировать мотивацию на здоровый образ жизни.

Тип урока: комбинированный

I. Организационный момент (нацелить учащихся на урок)

– На предыдущих уроках мы научились решать системы двух линейных уравнений с двумя переменными разными способами. Сегодня на уроке нам предстоит ответить на вопрос: «Как, не решая систему уравнений определить, сколько же решений она имеет?», поэтому тема урока называется «Исследование системы линейных уравнений с двумя переменными на количество решений ». Итак, начнём урок. Соберёмся с силами. В четыре приёма глубоко вдохнём воздух через нос и в пять приёмов с силой выдохнем, задувая воображаемую свечку. Повторим это 3 раза. Очень быстро активизируем свой мозг. Для этого интенсивно промассажируем межбровную точку: указательным пальцем правой руки делаем 5 круговых движений в одну сторону и в другую. Повторим это 2-3 раза.

II. Проверка домашнего задания (коррекция ошибок)

Показать решение системы разными способами:

Как выяснить имеет ли решение система уравнений и сколько

А) методом подстановки;
Б) Методом сложения;
В) по формулам Крамера;
Г) Графически.

Пока на доске готовятся к ответам по домашнему заданию, с остальными учениками начинается подготовка к следующему этапу урока.

III. Этап подготовки к усвоению нового материала (актуализация опорных знаний)

– Если вы знаете ответы на вопросы, но вдруг растерялись и всё сразу забыли, попробуйте собраться, убедить себя, что вы всё знаете и у вас всё получится. Хорошо помогает обыкновенный массаж всех пальцев. Во время обдумывания массажируйте все пальчики от основания к ногтю.

– Что называют системой двух уравнений?

Как выяснить имеет ли решение система уравнений и сколько

– Что значит решить систему линейных уравнений?
– Что является решением системы линейных уравнений?
– Будет ли пара чисел (– 3; 3) решением системы уравнений:

Как выяснить имеет ли решение система уравнений и сколько

– Расскажите, в чём суть каждого известного вам способа решения систем линейных уравнений с двумя переменными. (Рекомендуется общение в парах)

Ответы учеников сопровождаются показом слайдов 1-14 (Презентация) учителем. (можно одним из учеников). Проверяем домашнее задание (слушаем ответы учеников у доски).

Учитель: Для решения специфических систем уравнений существует ещё один способ, называется он методом подбора решения. Попробуйте, не решая подобрать решение системы уравнений: Как выяснить имеет ли решение система уравнений и сколько. Объясните суть метода.

– Найдите решение системы уравнений:

а) Как выяснить имеет ли решение система уравнений и сколькоб) Как выяснить имеет ли решение система уравнений и скольков) Как выяснить имеет ли решение система уравнений и сколько

– Дано уравнение a + b =15, добавьте такое уравнение, чтобы решением полученной системы была пара чисел (– 12; 27)
Перечислите ещё раз все способы решения систем линейных уравнений, с которыми вы познакомились.

IV. Этап усвоения новых знаний (исследовательская работа)

– Прежде чем переходить к следующему этапу урока, немного отдохнём.
Сидя на стуле – расслабьтесь, примите позу пиджака, висящего на вешалке,
«Постреляйте» глазами в соседей. А затем вспомним про «царственную осанку»: спина прямая, мышцы головы без напряжения, выражение лица очень значительное, соберёмся с мыслями, для чего сделаем массаж межбровной точки или пальчиков и приступим к дальнейшей работе.

Учитель: Мы научились решать системы линейных уравнений с двумя переменными разными способами и знаем, что система таких уравнений может иметь:

А) одно решение;
Б) не иметь решений;
В) много решений.

А нельзя ли, не прибегая к решению, ответить на вопрос: сколько же решений имеет система уравнений? Сейчас мы с вами проведём небольшое исследование.
Для начала разобьемся на три исследовательские группы. Составим план нашего исследования, ответив на вопросы:

1) Что представляет собой графическая модель системы линейных уравнений с двумя переменными?
2) Как могут располагаться две прямые на плоскости?
3) Как зависит количество решений системы от расположения прямых?

(После ответов учащихся используем слайды 6-10 Презентации.)

Учитель: Значит основа нашего исследования состоит в том, чтобы по виду системы понять, как располагаются прямые.
Каждая исследовательская группа решает эту задачу на конкретной системе уравнений по плану (Приложение 1).
Система для группы №1. Как выяснить имеет ли решение система уравнений и сколько

Система для группы №2. Как выяснить имеет ли решение система уравнений и сколько

Система для группы №3. Как выяснить имеет ли решение система уравнений и сколько

На выполнение работы даётся 5 минут, затем делимся своими выводами с одноклассниками. (Приложение 2), а также обращаемся к слайдам 15-17 Презентации.

V. Релаксация

Предлагаю отдохнуть, расслабиться: физкультминутка или психологический тренинг. (Приложение 3)

VI. Закрепление нового материала

А) Первичное закрепление

Используя полученные выводы, ответьте на вопрос: сколько решений имеет система уравнений

а) Как выяснить имеет ли решение система уравнений и сколькоб) Как выяснить имеет ли решение система уравнений и скольков) Как выяснить имеет ли решение система уравнений и сколько

Итак, прежде чем решать систему, можно узнать, сколько она имеет решений.

Б) решение более сложных задач по новой теме

1) Дана система уравнений Как выяснить имеет ли решение система уравнений и сколько

– При каких значениях параметра a данная система имеет единственное решение?

(Работа выполняется в группах по 4 человека: пары поворачиваются друг к другу)

– При каких значениях параметра a данная система не имеет решений?
– При каких значениях параметра данная система уравнений имеет много решений?

2) Дано уравнение – 2x + 3y = 12

Добавьте ещё одно уравнение так, чтобы система этих уравнений имела:

А) одно решение;
Б) бесконечно много решений.

3) Провести полное исследование системы уравнений на наличие её решений:

Как выяснить имеет ли решение система уравнений и сколько

VII. Рефлексия. Методика «Мухомор»

На дополнительной доске (или на отдельном плакате) нарисован круг, разбитый на секторы. Каждый сектор – это вопрос, рассмотренный на уроке. Ученикам предлагается
поставить точку:

  • ближе к центру, если ответ на вопрос не вызывает сомнения;
  • в середину сектора, если сомнения есть;
  • ближе к окружности, если вопрос остался не понятым; (Приложение 4)

VIII. Домашнее задание

Алгебра-7, под редакцией Теляковского. Параграфы 40-44, №1089,1095а), решать любым способом.
Выяснить, при каком значении a система имеет одно решение, много решений, не имеет решений Как выяснить имеет ли решение система уравнений и сколько

– Итак: наш урок подошёл к концу. Приготовим себя к перемене: сцепите руки замком, положите их на затылок. Положите голову на парту, резко сядьте прямо, примите «царственную» позу. Повторите это ещё раз.

– Урок окончен. Всем спасибо. Подойдите к доске и сделайте отметку на предложенном рисунке. До свидания.

💡 Видео

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ
Поделиться или сохранить к себе: