Как выразить переменную x через переменную y в линейном уравнении

Выразить переменную из уравнения

При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.

Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).

Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.

Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

ГДЗ учебник по алгебрее 7 класс Макарычев. 40. Линейное уравнение с двумя переменными. Номер №1033

а) Выразив из уравнения x − 6 y = 4 переменную x через y, найдите три каких−либо решения этого уравнения.
б) Выразив переменную y через переменную x, найдите три каких−либо решения уравнения 3 x − y = 10 .

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

ГДЗ учебник по алгебрее 7 класс Макарычев. 40. Линейное уравнение с двумя переменными. Номер №1033

Решение а

x − 6 y = 4
x = 4 + 6 y

пусть y = 1, тогда:
x = 4 + 6 * 1
x = 4 + 6
x = 10
( 10 ; 1 ) − решение уравнения

пусть y = 2, тогда:
x = 4 + 6 * 2
x = 4 + 12
x = 16
( 16 ; 2 ) − решение уравнения

пусть y = 3, тогда:
x = 4 + 6 * 3
x = 4 + 18
x = 22
( 22 ; 3 ) − решение уравнения

Решение б

3 x − y = 10
−y = 10 − 3 x
y = 3 x − 10

пусть x = 0, тогда:
y = 3 * 0 − 10
y = − 10
( 0 ;− 10 ) − решение уравнения

пусть x = 5, тогда:
y = 3 * 5 − 10
y = 15 − 10
y = 5
( 5 ; 5 ) − решение уравнения

пусть x = − 2, тогда:
y = 3 * (− 2 ) − 10
y = − 6 − 10
y = − 16
(− 2 ;− 16 ) − решение уравнения

Видео:Как выразить х через у в линейном уравнении с двумя переменнымиСкачать

Как выразить х через у в линейном уравнении с двумя переменными

Линейные уравнения с двумя переменными

Как выразить переменную x через переменную y в линейном уравнении

Линейные уравнения с двумя переменными

Определение: Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y — переменные, a, b,c – некоторые числа.

Например: 5х + 2у = 10; -7х+у = 5; х – у =2

Определение: Решение уравнения с двумя переменными – это пара значений переменных, обращающая это уравнение в верное равенство.

Если х=4, у=1,5 , то 2 ∙ 4 – 3 ∙ 1,5 = 10

т. е. пара чисел (4; 1,5) не является решением уравнения.

Определение: Равносильные уравнения – это уравнения, имеющие одни и те же решения или не имеющие их.

1. В уравнении можно перенести слагаемое из одной части уравнения в другую, изменив его знак.

2. Обе части уравнения можно множить или разделить на одно и то же отличное от нуля число.

Выразить одну переменную через другую:

1) Как выразить переменную x через переменную y в линейном уравнении2х +у = 5 2) Как выразить переменную x через переменную y в линейном уравнении3)

График линейного уравнения с двумя переменными

Определение: График уравнения с двумя переменными – это множество всех точек координатной плоскости, координаты которых являются решениями этого уравнения.

1. Пример: 3х + 2у = 6, где а=3, b=2, c=6

План 1) Выразить переменную у

у = Как выразить переменную x через переменную y в линейном уравнении

у = -1,5х +3 линейная функция вида y = kx + b,

2) Составить таблицу значений х и у

3) Построить график

Как выразить переменную x через переменную y в линейном уравнении

2. Частные случаи построения графика ax + by = c

у =Как выразить переменную x через переменную y в линейном уравнении

x =Как выразить переменную x через переменную y в линейном уравнении

Как выразить переменную x через переменную y в линейном уравнении

Как выразить переменную x через переменную y в линейном уравнениих = 2

Графика не существует

График – вся координатная плоскость

Решение систем уравнений с двумя переменными. Графический способ.

Определение: Система уравнений – это несколько уравнений, для которых находят общее решение.

Как выразить переменную x через переменную y в линейном уравнении

Определение: Решение системы уравнений с двумя переменными – это пара значений переменных, обращающая каждое уравнение в верное равенство.

Если х=7, у=5, то Как выразить переменную x через переменную y в линейном уравнении, Как выразить переменную x через переменную y в линейном уравнении, верно,

т. е. (7; 5) – решение системы уравнений.

Определение: Решить систему – это значит найти все ее решения или доказать, что решений нет.

План решения системы уравнений графическим способом

1. Выразить переменную у в первом уравнении.

2. Выразить переменную у во втором уравнении.

3. В одной системе построить графики данных функций.

4. Координаты точки пересечения графиков и является решением системы уравнений.

Пример: Как выразить переменную x через переменную y в линейном уравнении

1) х +у = 6 → у = 6-х линейная функция, график вида у = kx + b, k = -1, b = 6

Видео:Как выразить одну переменную через другую?Скачать

Как выразить одну переменную через другую?

Уравнение с двумя переменными

Уравнение с двумя переменными и его решение

Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7

Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y=6 решениями являются пары

x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

Уравнение имеет бесконечное множество решений.

Свойства уравнения с двумя переменными

Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

  • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
  • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$

Примеры

Пример 1. Из данного линейного уравнения выразите y через x и x через y:

Алгоритм: рассмотрим 3x+4y=10

1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$

📹 Видео

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Как выразить переменную. Алгебра 10 класс.Скачать

Как выразить переменную. Алгебра 10 класс.

Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Как в линейном уравнении с двумя переменными выразить одну переменную через другую и решить его.Скачать

Как в линейном уравнении с двумя переменными выразить одну переменную через другую и решить его.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Выражение одной переменной через другую в линейном уравнении с двумя переменнымиСкачать

Выражение одной переменной через другую в линейном уравнении с двумя переменными

Линейное уравнение с двумя переменными 7 классСкачать

Линейное уравнение с двумя переменными 7 класс

Линейное уравнение с одной переменнойСкачать

Линейное уравнение с одной переменной

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Линейное уравнение с 2 переменными, 7 классСкачать

Линейное уравнение с 2 переменными, 7 класс
Поделиться или сохранить к себе: