Как выразить переменную из уравнения

Выразить переменную из уравнения

При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.

Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).

Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.

Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.

Видео:Как выразить х через у в линейном уравнении с двумя переменнымиСкачать

Как выразить х через у в линейном уравнении с двумя переменными

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Как выразить переменную. Алгебра 10 класс.Скачать

Как выразить переменную. Алгебра 10 класс.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Как выразить переменную из уравнения

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Как выразить переменную из формулыСкачать

Как выразить переменную из формулы

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Как выразить переменную из уравнения

Вернем получившееся равенство Как выразить переменную из уравненияв первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Как выразить переменную из уравнения

Пример 4. Рассмотрим равенство Как выразить переменную из уравнения

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Как выразить переменную из уравнения

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Как выразить переменную из уравнения

Видео:Преобразование формул по физике. Как выразить неизвестное?Скачать

Преобразование формул по физике. Как выразить неизвестное?

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Как выразить переменную из уравнения

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Как выразить переменную из уравнения

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Как выразить переменную из уравнения

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Как выразить переменную из уравнения

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Как выразить переменную из уравнения

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Как выразить переменную из уравнения

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Как выразить переменную из уравнения

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Как выразить переменную из уравнения

Чтобы выразить число 3 мы поступили следующим образом:

Как выразить переменную из уравнения

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Как выразить переменную из уравнения

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Как выразить переменную из уравнения

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Как выразить переменную из уравнения

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Как выразить переменную из уравнения

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Как выразить переменную из уравненияпозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Как выразить переменную из уравнениятребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Как выразить переменную из уравнения

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Как выразить переменную из уравнениявместо числа 15 располагается переменная x

Как выразить переменную из уравнения

В этом случае переменная x берет на себя роль неизвестного делимого.

Как выразить переменную из уравнения

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Как выразить переменную из уравнения. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Как выразить переменную из уравнениявместо числа 5 располагается переменная x .

Как выразить переменную из уравнения

В этом случае переменная x берет на себя роль неизвестного делителя.

Как выразить переменную из уравнения

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Как выразить переменную из уравнения. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Как выразить переменную из уравнения

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Как выразить переменную из уравнения

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Как выразить переменную из уравнения

Компонентами умножения являются множимое, множитель и произведение

Как выразить переменную из уравнения

Компонентами деления являются делимое, делитель и частное

Как выразить переменную из уравнения

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Как выразить переменную из уравнения

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Как выразить переменную из уравнения

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Как выразить переменную из уравнения

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Как выразить переменную из уравнения

Вычислим правую часть получившегося уравнения:

Как выразить переменную из уравнения

Мы получили новое уравнение Как выразить переменную из уравнения. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Как выразить переменную из уравнения

При этом переменная x является не просто множителем, а неизвестным множителем

Как выразить переменную из уравнения

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Как выразить переменную из уравнения

Вычислим правую часть, получим значение переменной x

Как выразить переменную из уравнения

Для проверки найденный корень отправим в исходное уравнение Как выразить переменную из уравненияи подставим вместо x

Как выразить переменную из уравнения

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Как выразить переменную из уравнения

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Как выразить переменную из уравнения

Отсюда x равен 2

Как выразить переменную из уравнения

Видео:КАК ВЫРАЗИТЬ ИЗ ФОРМУЛЫ ПЕРЕМЕННУЮ? Пойми раз и навсегда за 5 минут!Скачать

КАК ВЫРАЗИТЬ ИЗ ФОРМУЛЫ ПЕРЕМЕННУЮ? Пойми раз и навсегда за 5 минут!

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Как выразить переменную из уравнения

Согласно порядку действий, в первую очередь выполняется умножение:

Как выразить переменную из уравнения

Подставим корень 2 во второе уравнение 28x = 56

Как выразить переменную из уравнения

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Как выразить переменную из уравнения

Вычтем из обеих частей уравнения число 10

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях:

Как выразить переменную из уравнения

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения.

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 2

Как выразить переменную из уравнения

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как выразить переменную из уравнениямы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Как выразить переменную из уравнения. Корень этого уравнения, как и уравнения Как выразить переменную из уравнениятак же равен 2

Как выразить переменную из уравнения

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Как выразить переменную из уравнения

Вычтем из обеих частей уравнения число 12

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях уравнения:

Как выразить переменную из уравненияВ левой части останется 4x , а в правой части число 4

Как выразить переменную из уравнения

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Как выразить переменную из уравнения

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Как выразить переменную из уравнения

Пример 3. Решить уравнение Как выразить переменную из уравнения

Раскроем скобки в левой части равенства:

Как выразить переменную из уравнения

Прибавим к обеим частям уравнения число 8

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях уравнения:

Как выразить переменную из уравнения

В левой части останется 2x , а в правой части число 9

Как выразить переменную из уравнения

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 4,5

Как выразить переменную из уравнения

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как выразить переменную из уравнениямы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Как выразить переменную из уравнения. Корень этого уравнения, как и уравнения Как выразить переменную из уравнениятак же равен 4,5

Как выразить переменную из уравнения

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Как выразить переменную из уравнения

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Как выразить переменную из уравнения

Получается верное равенство. Значит число 2 действительно является корнем уравнения Как выразить переменную из уравнения.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Как выразить переменную из уравнения

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Как выразить переменную из уравнения

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как выразить переменную из уравнения

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Как выразить переменную из уравнения

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Как выразить переменную из уравнения

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Как выразить переменную из уравнения

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Как выразить переменную из уравнения

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Как выразить переменную из уравнения

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Как выразить переменную из уравнения

В результате останется простейшее уравнение

Как выразить переменную из уравнения

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Как выразить переменную из уравнения

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 4

Как выразить переменную из уравнения

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Как выразить переменную из уравнения. Корень этого уравнения, как и уравнения Как выразить переменную из уравненияравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Как выразить переменную из уравнения, мы умножили обе части на множитель 8 и получили следующую запись:

Как выразить переменную из уравнения

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Как выразить переменную из уравненияна множитель 8 желательно переписать следующим образом:

Как выразить переменную из уравнения

Пример 2. Решить уравнение Как выразить переменную из уравнения

Умнóжим обе части уравнения на 15

Как выразить переменную из уравнения

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Как выразить переменную из уравнения

Перепишем то, что у нас осталось:

Как выразить переменную из уравнения

Раскроем скобки в правой части уравнения:

Как выразить переменную из уравнения

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях, получим

Как выразить переменную из уравнения

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 5

Как выразить переменную из уравнения

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Как выразить переменную из уравненияравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Как выразить переменную из уравнения

Умнóжим обе части уравнения на 3

Как выразить переменную из уравнения

В левой части можно сократить две тройки, а правая часть будет равна 18

Как выразить переменную из уравнения

Останется простейшее уравнение Как выразить переменную из уравнения. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как выразить переменную из уравнения

Отсюда Как выразить переменную из уравнения

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 9

Как выразить переменную из уравнения

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Как выразить переменную из уравнения

Умнóжим обе части уравнения на 6

Как выразить переменную из уравнения

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Как выразить переменную из уравнения

Сократим в обеих частях уравнениях то, что можно сократить:

Как выразить переменную из уравнения

Перепишем то, что у нас осталось:

Как выразить переменную из уравнения

Раскроем скобки в обеих частях уравнения:

Как выразить переменную из уравнения

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях:

Как выразить переменную из уравнения

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Как выразить переменную из уравнения

Вернемся к исходному уравнению Как выразить переменную из уравненияи подставим вместо x найденное значение 4

Как выразить переменную из уравнения

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Как выразить переменную из уравнения

Раскроем скобки в обеих частях уравнения там, где это можно:

Как выразить переменную из уравнения

Умнóжим обе части уравнения на 15

Как выразить переменную из уравнения

Раскроем скобки в обеих частях уравнения:

Как выразить переменную из уравнения

Сократим в обеих частях уравнения, то что можно сократить:

Как выразить переменную из уравнения

Перепишем то, что у нас осталось:

Как выразить переменную из уравнения

Раскроем скобки там, где это можно:

Как выразить переменную из уравнения

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Как выразить переменную из уравнения

Приведем подобные слагаемые в обеих частях уравнения:

Как выразить переменную из уравнения

Найдём значение x

Как выразить переменную из уравнения

В получившемся ответе можно выделить целую часть:

Как выразить переменную из уравнения

Вернемся к исходному уравнению и подставим вместо x найденное значение Как выразить переменную из уравнения

Как выразить переменную из уравнения

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Как выразить переменную из уравнения

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Как выразить переменную из уравнения

Значение переменной А равно Как выразить переменную из уравнения. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Как выразить переменную из уравнения, то уравнение будет решено верно

Как выразить переменную из уравнения

Видим, что значение переменной B , как и значение переменной A равно Как выразить переменную из уравнения. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Как выразить переменную из уравнения

Подставим найденное значение 2 вместо x в исходное уравнение:

Как выразить переменную из уравнения

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Как выразить переменную из уравнения

Выполним сокращение в каждом слагаемом:

Как выразить переменную из уравнения

Перепишем то, что у нас осталось:

Как выразить переменную из уравнения

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Как выразить переменную из уравнения

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Как выразить переменную из уравнения

Этим методом мы тоже будем пользоваться часто.

Видео:Как выразить одну переменную через другую?Скачать

Как выразить одну переменную через другую?

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Как выразить переменную из уравнения. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Как выразить переменную из уравнения

Приведем подобные слагаемые:

Как выразить переменную из уравнения

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Как выразить переменную из уравнения. Это есть произведение минус единицы и переменной x

Как выразить переменную из уравнения

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Как выразить переменную из уравненияна самом деле выглядит следующим образом:

Как выразить переменную из уравнения

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Как выразить переменную из уравнения

или разделить обе части уравнения на −1 , что еще проще

Как выразить переменную из уравнения

Итак, корень уравнения Как выразить переменную из уравненияравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Как выразить переменную из уравнения

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Как выразить переменную из уравненияна минус единицу:

Как выразить переменную из уравнения

После раскрытия скобок в левой части образуется выражение Как выразить переменную из уравнения, а правая часть будет равна 10

Как выразить переменную из уравнения

Корень этого уравнения, как и уравнения Как выразить переменную из уравненияравен 5

Как выразить переменную из уравнения

Значит уравнения Как выразить переменную из уравненияи Как выразить переменную из уравненияравносильны.

Пример 2. Решить уравнение Как выразить переменную из уравнения

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Как выразить переменную из уравнения. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Как выразить переменную из уравненияна −1 можно записать подробно следующим образом:

Как выразить переменную из уравнения

либо можно просто поменять знаки всех компонентов:

Как выразить переменную из уравнения

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Как выразить переменную из уравненияна −1 , мы получили уравнение Как выразить переменную из уравнения. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Как выразить переменную из уравнения

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Как выразить переменную из уравнения

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Как выразить переменную из уравнения

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Как выразить переменную из уравнения

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Как выразить переменную из уравнения

Видео:АЛГЕБРА 7 класс : Выражения с переменнымиСкачать

АЛГЕБРА 7 класс : Выражения с переменными

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Как выразить переменную из уравнения. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Как выразить переменную из уравнения

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Как выразить переменную из уравнения

Приведем подобные слагаемые в левой части:

Как выразить переменную из уравнения

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Как выражать переменные из формул?Скачать

Как выражать переменные из формул?

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Как выразить переменную из уравнениямы произведение 10 делили на известный сомножитель 2

Как выразить переменную из уравнения

Но если в уравнении Как выразить переменную из уравненияобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Как выразить переменную из уравнения

Уравнения вида Как выразить переменную из уравнениямы решали выражая неизвестное слагаемое:

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Как выразить переменную из уравненияслагаемое 4 можно перенести в правую часть, изменив знак:

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Далее разделить обе части на 2

Как выразить переменную из уравнения

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Как выразить переменную из уравнения.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Как выразить переменную из уравнения

В случае с уравнениями вида Как выразить переменную из уравненияудобнее делить произведение на известный сомножитель. Сравним оба решения:

Как выразить переменную из уравнения

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:Алгебраические выражения. Практическая часть. 6 класс.Скачать

Алгебраические выражения.  Практическая часть. 6 класс.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Как выразить переменную из уравнения

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Как выразить переменную из уравнения

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Как выразить переменную из уравнения

Подставляем по-очереди найденные значения в исходное уравнение Как выразить переменную из уравненияи убеждаемся, что при этих значениях левая часть равняется нулю:

Как выразить переменную из уравнения

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Как выразить переменную из уравнения

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Как выразить переменную из уравнения

Пример 2. Решить уравнение Как выразить переменную из уравнения

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Выразить переменнуюСкачать

Выразить переменную

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Как выразить переменную из уравненияне имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Как выразить переменную из уравнения. Тогда уравнение примет следующий вид

Как выразить переменную из уравнения

Пусть Как выразить переменную из уравнения

Как выразить переменную из уравнения

Пример 2. Решить уравнение Как выразить переменную из уравнения

Раскроем скобки в левой части равенства:

Как выразить переменную из уравнения

Приведем подобные слагаемые:

Как выразить переменную из уравнения

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Как выразить переменную из уравнения

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Как выразить переменную из уравнения

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Как выразить переменную из уравненияопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Как выразить переменную из уравненияна t

Как выразить переменную из уравнения

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как выразить переменную из уравнения

В получившемся уравнении левую и правую часть поменяем местами:

Как выразить переменную из уравнения

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Как выразить переменную из уравненияопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Как выразить переменную из уравнения

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как выразить переменную из уравнения

В получившемся уравнении v × t = s обе части разделим на v

Как выразить переменную из уравнения

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Как выразить переменную из уравнения

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Как выразить переменную из уравненияпримет следующий вид

Как выразить переменную из уравнения

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Как выразить переменную из уравнения

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Как выразить переменную из уравнения

Затем разделить обе части на 50

Как выразить переменную из уравнения

Пример 2. Дано буквенное уравнение Как выразить переменную из уравнения. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Как выразить переменную из уравнения

Разделим обе части уравнения на b

Как выразить переменную из уравнения

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Как выразить переменную из уравнения

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Как выразить переменную из уравнения. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Как выразить переменную из уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Как выразить переменную из уравнения

В левой части вынесем за скобки множитель x

Как выразить переменную из уравнения

Разделим обе части на выражение a − b

Как выразить переменную из уравнения

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Как выразить переменную из уравнения

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Как выразить переменную из уравнения

Пример 4. Дано буквенное уравнение Как выразить переменную из уравнения. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Как выразить переменную из уравнения

Умнóжим обе части на a

Как выразить переменную из уравнения

В левой части x вынесем за скобки

Как выразить переменную из уравнения

Разделим обе части на выражение (1 − a)

Как выразить переменную из уравнения

Видео:Секретная техника выражений формул по физике. Как выразить переменную? ОГЭ. ЕГЭ. ФизикаСкачать

Секретная техника выражений формул по физике. Как выразить переменную? ОГЭ. ЕГЭ. Физика

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Как выразить переменную из уравнения

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Как выразить переменную из уравненияпримет вид Как выразить переменную из уравнения.
Отсюда Как выразить переменную из уравнения.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Видео:Урок 2 ВЫРАЖЕНИЯ С ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок 2 ВЫРАЖЕНИЯ С ПЕРЕМЕННЫМИ 7 КЛАСС

Как выразить переменную из формулы с дробью

Как выразить переменную из уравнения

Как выразить переменную из уравненияСерия

Как выразить переменную из уравнения

Как работать с формулой, чтобы выразить из нее указанную переменную

1. а) Если формула содержит дроби, то сначала нужно избавиться от них, умножив обе части формулы на общий знаменатель;

б) если формула содержит корень, то нужно избавиться от него, возведя обе части формулы в квадрат;

в) если формула содержит дроби и корень, то нужно выполнить действия а) и б) в удобной последовательности.

2. Слагаемое (слагаемые), содержащие переменную, которую нужно выразить, перенести в левую часть, если они не находятся там. Иногда для этого достаточно просто поменять местами левую и правую части формулы.

3. Привести левую часть к виду, в котором нужная переменная будет являться одним из множителей. Иногда для этого нужно будет сгруппировать слагаемые, то есть выполнить разложение на множители левой части формулы.

4. Разделить обе части формулы на лишние множители, находящиеся в левой части, чтобы произошло сокращение, и нужная переменная осталась в левой части одна-единственная.

5. Если полученная таким образом переменная находится в степени, то нужно извлечь из обеих частей формулы корни этой же степени.

При разборе примеров, объясняйте себе каждый шаг!!

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравненияСерия

Как выразить переменную из уравнения

Как работать с формулой, чтобы выразить из нее указанную переменную

1. а) Если формула содержит дроби, то сначала нужно избавиться от них, умножив обе части формулы на общий знаменатель;

б) если формула содержит корень, то нужно избавиться от него, возведя обе части формулы в квадрат;

в) если формула содержит дроби и корень, то нужно выполнить действия а) и б) в удобной последовательности.

2. Слагаемое (слагаемые), содержащие переменную, которую нужно выразить, перенести в левую часть, если они не находятся там. Иногда для этого достаточно просто поменять местами левую и правую части формулы.

3. Привести левую часть к виду, в котором нужная переменная будет являться одним из множителей. Иногда для этого нужно будет сгруппировать слагаемые, то есть выполнить разложение на множители левой части формулы.

4. Разделить обе части формулы на лишние множители, находящиеся в левой части, чтобы произошло сокращение, и нужная переменная осталась в левой части одна-единственная.

5. Если полученная таким образом переменная находится в степени, то нужно извлечь из обеих частей формулы корни этой же степени.

При разборе примеров, объясняйте себе каждый шаг!!

Этот урок – полезное дополнение к предыдущей теме » Тождественные преобразования уравнений «.

Умение делать такие вещи – штука не просто полезная, она – необходимая. Во всех разделах математики, от школьной до высшей. Да и в физике тоже. Именно по этой причине задания подобного рода обязательно присутствуют и в ЕГЭ и в ОГЭ. Во всех уровнях – как базовом, так и профильном.

Собственно, вся теоретическая часть подобных заданий представляет собой одну единственную фразу. Универсальную и простую до безобразия.

Удивляемся, но запоминаем:

Любое равенство с буквами, любая формула – это ТОЖЕ УРАВНЕНИЕ!

А где уравнение, там автоматически и тождественные преобразования уравнений . Вот и применяем их в удобном нам порядке и – готово дело.) Читали предыдущий урок? Нет? Однако… Тогда эта ссылочка – для вас.

Ах, вы в курсе? Отлично! Тогда применяем теоретические знания на практике.

Начнём с простого.

Как выразить одну переменную через другую?

Такая задача постоянно возникает при решении систем уравнений. Например, имеется равенство:

Здесь две переменные – икс и игрек.

Что означает это задание? Оно означает, что мы должны получить некоторое равенство, где слева стоит чистый икс. В гордом одиночестве, безо всяких соседей и коэффициентов. А справа – что уж получится.

И как же нам получить такое равенство? Очень просто! С помощью всё тех же старых добрых тождественных преобразований! Вот и применяем их в удобном нам порядке, шаг за шагом добираясь до чистого икса.

Анализируем левую часть уравнения:

Здесь нам мешаются тройка перед иксом и —2y. Начнём с —, это попроще будет.

Перекидываем — из левой части в правую. Меняя минус на плюс, разумеется. Т.е. применяем первое тождественное преобразование:

Полдела сделано. Осталась тройка перед иксом. Как от неё избавиться? Разделить обе части на эту самую тройку! Т.е. задействовать второе тождественное преобразование.

Вот и всё. Мы выразили икс через игрек. Слева – чистый икс, а справа – что уж получилось в результате «очищения» икса.

Можно было бы сначала поделить обе части на тройку, а затем – переносить. Но это привело бы к появлению дробей в процессе преобразований, что не очень удобно. А так, дробь появилась лишь в самом конце.

Напоминаю, что порядок преобразований никакой роли не играет. Как нам удобно, так и делаем. Самое главное – не порядок применения тождественных преобразований, а их правильность!

А можно из этого же равенства

А почему – нет? Можно! Всё то же самое, только на этот раз нас интересует слева чистый игрек. Вот и очищаем игрек от всего лишнего.

Первым делом избавляемся от выражения . Перебрасываем его в правую часть:

Осталась двойка с минусом. Делим обе части на (-2):

И все дела.) Мы выразили y через х. Переходим к более серьёзным заданиям.

Как выразить переменную из формулы?

Не проблема! Точно так же! Если понимать, что любая формула – тоже уравнение.

Например, такое задание:

выразить переменную с.

Формула – тоже уравнение! Задание означает, что через преобразования из предложенной формулы нам надо получить какую-то новую формулу. В которой слева будет стоять чистая с, а справа – что уж получится, то и получится…

Однако… Как нам эту самую с вытаскивать-то?

Как-как… По шагам! Ясное дело, что выделить чистую с сразу невозможно: она в дроби сидит. А дробь умножается на r… Значит, первым делом очищаем выражение с буквой с, т.е. всю дробь целиком. Здесь можно поделить обе части формулы на r.

Следующим шагом надо вытащить с из числителя дроби. Как? Легко! Избавимся от дроби. Нету дроби – нету и числителя.) Умножаем обе части формулы на 2:

Осталась элементарщина. Обеспечим справа букве с гордое одиночество. Для этого переменные a и b переносим влево:

Вот и всё, можно сказать. Осталось переписать равенство в привычном виде, слева направо и – ответ готов:

Это было несложное задание. А теперь задание на основе реального варианта ЕГЭ:

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле

где с = 1500 м/с – скорость звука в воде,

f – частота отражённого от дна сигнала, регистрируемая приёмником (в МГц).

Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна 2 м/с.

«Многа букафф», да… Но буквы – это лирика, а общая суть всё равно та же самая. Первым делом надо выразить эту самую частоту отражённого сигнала (т.е. букву f) из предложенной нам формулы. Вот этим и займёмся. Смотрим на формулу:

Напрямую, естественно, букву f никак не выдернешь, она снова в дробь запрятана. Причём и в числитель и в знаменатель. Поэтому самым логичным шагом будет избавиться от дроби. А там – видно будет. Для этого применяем второе преобразование – умножаем обе части на знаменатель.

А вот тут – очередные грабли. Прошу обратить внимание на скобки обеих частях! Частенько именно в этих самых скобочках и кроются ошибки в подобных заданиях. Точнее, не в самих скобочках, а в их отсутствии.)

Скобки слева означают, что буква v умножается на весь знаменатель целиком. А не на его отдельные кусочки…

Справа же, после умножения, дробь исчезла и остался одинокий числитель. Который, опять же, весь целиком умножается на буковку с. Что и выражается скобками в правой части.)

А вот теперь скобки и раскрыть можно:

Дальше дело нехитрое. Всё что с f собираем слева, а всё что без f – справа. Займёмся переносом:

Отлично. Процесс идёт.) Теперь буковка f слева стала общим множителем. Выносим её за скобки:

Осталось всего ничего. Делим обе части на скобку (vc) и – дело в шляпе!

В принципе, всё готово. Переменная f уже выражена. Но можно дополнительно «причесать» полученное выражение – вынести f за скобку в числителе и сократить всю дробь на (-1), тем самым избавившись от лишних минусов:

Вот такое выражение. А вот теперь и числовые данные подставить можно. Получим:

Вот и всё. Надеюсь, общая идея понятна.

Делаем элементарные тождественные преобразования с целью уединить интересующую нас переменную. Главное здесь — не последовательность действий (она может быть любой), а их правильность.

В этих двух уроках рассматриваются лишь два базовых тождественных преобразования уравнений. Они работают всегда. На то они и базовые. Помимо этой парочки, существует ещё множество других преобразований, которые тоже будут тождественными, но не всегда, а лишь при определённых условиях.

Например, возведение обеих частей уравнения (или формулы) в квадрат (или наоборот, извлечение корня из обеих частей) будет тождественным преобразованием, если обе части уравнения заведомо неотрицательны.

Или, скажем, логарифмирование обеих частей уравнения будет тождественным преобразованием, если обе части заведомо положительны. И так далее…

Подобные преобразования будут рассматриваться в соответствующих темах.

А здесь и сейчас — примеры для тренировки по элементарным базовым преобразованиям.

Средняя скорость лыжника (в км/ч) на дистанции в два круга рассчитывается по формуле:

где V1 и V2 – средние скорости (в км/ч) на первом и втором кругах соответственно. Какова была средняя скорость лыжника на втором круге, если известно, что первый круг лыжник пробежал со скоростью 15 км/ч, а средняя скорость на всей дистанции оказалась равной 12 км/ч?

Задача на основе реального варианта ОГЭ:

Центростремительное ускорение при движении по окружности (в м/с 2 ) можно вычислить по формуле a=ω 2 R, где ω – угловая скорость (в с -1 ), а R – радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 8,5 с -1 , а центростремительное ускорение равно 289 м/с 2 .

Задача на основе реального варианта профильного ЕГЭ:

К источнику с ЭДС ε=155 В и внутренним сопротивлением r=0,5 Ом хотят подключить нагрузку с сопротивлением R Ом. Напряжение на этой нагрузке, выражаемое в вольтах, даётся формулой:

При каком сопротивлении нагрузки напряжение на ней будет 150 В? Ответ выразите в омах.

Ответы (в беспорядке): 4; 15; 2; 10.

А уж где числа, километры в час, метры, омы – это как-нибудь сами…)

Как выразить переменную из уравнения

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Как выразить переменную из уравнения

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Как выразить переменную из уравнения

Привлекайте внимание посетителей к Вашему магазину, публикуя новости о Вашей компании и товарах!

Как выразить переменную из уравнения

Идёт приём заявок

Подать заявку Как выразить переменную из уравнения

Для учеников 1-11 классов и дошкольников

Как выразить переменную из уравнения

Как выразить переменную из уравнения Как выразить переменную из уравненияКак выразить переменную из уравнения

Как выразить переменную из уравнения

Описание презентации по отдельным слайдам:

Выразить переменную из формулы Дудников Ю. А. МБОУ Качалинская СОШ 2017

1. В той части формулы, где содержится переменная, которую нужно выразить, расставьте порядок действий. В одночленах и многочленах, не содержащих искомую величину, порядок действий не расставляем. 2. Найдите в выражении последнее действие, и перенести одночлен или многочлен, исполняющий это действие через знак равенства первым, но уже с противоположным действием. Таким образом, перенесите из одной части равенства в другую все известные величины. В заключение перепишите формулу так, чтобы неизвестная переменная стояла слева. Порядок выражения переменной

1 2 1 2 3 S a t 2 = 1 2 2 S a t 2 = 2 S a t 2 =

a = 1 1 2 1 0 — t υ υ 0 t a = + υ υ t a = + 0 υ υ t a — = 0 υ υ

1 2 1 2 3 1 1 2 b + S = a h h = + 2 ) ( a b ( ) h b a 2 S + = h a b 2 S — = h b a a b

1 2 1 1 a = υ υ 0 — t Заново расставляем порядок действий, так как нужная переменная оказалась в другой части формулы. t — t = υ 0 a υ

1 2 1 2 3 1 1 2 υ + S = υ 0 t t = + 2 0 ) ( υ υ ( ) t 0 υ υ 2 S + = t 0 υ υ 2 S — = t 0 υ υ υ υ

1 2 1 ( ) c 0 t t к c 0 t t к c 0 t t к Q m + = c 0 t t к

3 1 2 1 2 1 υ υ 1 2 S 2 = 0 2 — a υ — 2 S a 2 = υ 2 0 2 S a 2 = + 2 0 υ υ 2 S a = 2 + 0 υ υ 2 2 S a = + 0 υ υ

1 3 2 2 3 3 g ℓ = T 2 π g ℓ = T 2 π 2 2 g ℓ = T 4 π 2 2 g ℓ T 4 π = g

3 2 1 1 4 3 2 1 1 2 ν h = + ν кр h m 2 2 υ ν h — = ν кр h m 2 2 υ 2 ν h — = ν кр h m 2 υ ( ) 2 ν h — = ν кр h m 2 υ ( ) ν h — = ν кр h m 2 υ ( ) ν h — = ν кр h m 2 υ ( )

1 = T T х — Т η н н = T T х — Т η н н — T T х = Т η н н — — T х = Т η н — ( 1 ) — 1 = T T х — н η 1 = T T х — н η

— k d = — C 2 d — k d = C 2 d ( ) — — k d = C 2 d — C + k d = C 2 d + C ( ) + k 1 = C 2 d + C + k 1 = C 2 d + C

1 1 1 2 1 2 2 + S = υ 0 t 3 t = + 2 0 ) ( υ υ υ ( ) t 0 υ υ 2 S + = t 0 υ υ 2 S — = t 0 υ υ υ υ

2 2 3 5 1 4 x a + t k + b = 1 x a — t k + b = 1 2 2 3 1 4 ( x a — t k + b = 1 2 2 3 1 ) 2 ( x a — t k + b = 1 2 ) 2 ) ( 1 ( x a — t k + b = 1 ) 2 ) ( (

1 2 1 4 3 1 3 2 2 4 1 3 2 1 1 S = ) + K 2 E m a x — b ( + K E m ) 2 a x — b ( = S + K E m 2 a x — b = S 2 a x + K E m + b = S m + K E + b = S S 2 a x + K E + b = S S m x a + K E + b = S S m

h + g R G = ) 2 M ( h + g R G = ) 2 M ( h + g R G = ) 2 M ( h + g R G = M h — g R G = M

1 1 2 Приведем к общему знаменателю левую часть формулы Если дроби равны, то обратные им дроби тоже равны. Перевернем дроби, для того чтобы неизвестная переменная оказалась в числителе. F 1 1 = + f 1 d F 1 1 = — f 1 d F d 1 = — f F d F d 1 = — f F d F d = — f F d

1 1 2 1 Приведем к общему знаменателю левую часть формулы Переворачиваем дробь. k 1 2 = + f 3 d k 1 2 = — f 3 d k d = — f k d 2 3 — k d 2 = f k d 3 1 k d 2 = — f k d 3 1

X A + = ( ) ω φ t s i n r c r c X A — = a ω t s i n r c ω 1

U U X β = 2 l o g 0 δ U U X β = 2 l o g 0 δ U U X β = 0 δ 2 U U X β = 0 δ 2

f 0 f 1 = — c υ ( f 0 f 1 = — c υ ) ( )

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравнения

Как выразить переменную из уравнения

В каждой задаче по физике требуется из формулы выразить неизвестную, следующим шагом подставить численные значения и получить ответ, в некоторых случаях необходимо только выразить неизвестную величину. Способов выведения неизвестной из формулы много. Если посмотреть страницы Интернета, то мы увидим множество рекомендаций по этому поводу. Это говорит о том, что единого подхода к решению этой проблемы научное сообщество еще не выработало, а те способы, которые используются, как показывает опыт работы в школе – все они малоэффективны. До 90% учащихся выпускных классов не умеют правильно выразить неизвестное. Те же, кто умеют это делать – выполняют громоздкие преобразования. Очень странно, но физики, математики, химики имеют разные подходы, объясняя методы переноса параметров через знак равенства (предлагают правила треугольника, креста или пропорций др.) Можно сказать, что имеют разную культуру работы с формулами. Можно представить, что происходит с большинством учеников, которые встречается с разными трактовками решения данной проблемы, последовательно посещая уроки этих предметов. Эту ситуацию описывает типичный диалог в сети:

Научите выражать из формул величины. 10 класс, мне стыдно не знать, как из одной формулы делать другую.

Да не переживай — это проблема многих моих одноклассников, хоть я и в 9 кл. Учителя показывают это чаще всего методом треугольника, но мне кажется, что это неудобно, да и запутаться легко. Покажу наиболее простой способ, которым я пользуюсь.

Допустим, дана формула:

Ну более простая. тебе из этой формулы нужно найти время. Ты берешь и в эту формулу подставляешь числа только разные, исходя из алгебры. Допустим:

и тебе наверное хорошо видно, что чтобы найти время в алгебраическом выражении 5 нужно 45/9 т.е переходим к физике: t=s/v

У большинства учащихся формируется психологический блок. Часто учащиеся отмечают, что при чтении учебника трудности в первую очередь вызывают те фрагменты текста, в которых много формул, что «длинные выводы все равно не понять», но при этом возникает чувство неполноценности, неверия в свои силы.

Я, предлагаю следующее решение данной проблемы – большинство учащихся все — таки могут решать примеры и, следовательно, расставлять порядок действий. Используем это их умение.

1. В той части формулы, где содержится переменная, которую нужно выразить, надо расставь порядок действий, причем в одночленах, не содержащих искомую величину этого делать не будем.

2. Затем в обратной последовательности вычислений перенесите элементы формулы в другую часть формулы ( через знак равенства) с противоположным действием ( « минус» — «плюс», «разделить» — « умножить», « возведение в квадрат» – «извлечение корня квадратного»).

То есть найдем в выражении последнее действие и перенесем одночлен или многочлен, исполняющий это действие, через знак равенства первым, но уже с противоположным действием. Таким образом, последовательно, находя последнее действие в выражении, перенесите из одной части равенства в другую все известные величины. В заключение перепишем формулу так, чтобы неизвестная переменная стояла слева.

Получаем четкий алгоритм работы, точно знаем, сколько преобразований необходимо выполнить. Можем для тренировки использовать уже известные формулы, можем выдумывать свои. Для начала работы над усвоением данного алгоритма была создана презентация.

Опыт работы с учащимися показывает, что данный способ хорошо воспринимается ими. Реакция учителей на мое выступление на фестивале «Учитель профильной школы» также говорит о положительном зерне, заложенном в этой работе.

💡 Видео

Выражение неизвестных величин из формул по физикеСкачать

Выражение неизвестных величин из формул по физике

Алгебраические выражения. 6 класс.Скачать

Алгебраические выражения. 6 класс.

Как из формулы выразить другую переменнуюСкачать

Как из формулы выразить другую переменную

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.
Поделиться или сохранить к себе: