Как выразить игрек через икс в линейном уравнении с двумя переменными

Уравнение с двумя переменными

Уравнение с двумя переменными и его решение

Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7

Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y=6 решениями являются пары

x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

Уравнение имеет бесконечное множество решений.

Свойства уравнения с двумя переменными

Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

  • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
  • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$

Примеры

Пример 1. Из данного линейного уравнения выразите y через x и x через y:

Алгоритм: рассмотрим 3x+4y=10

1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$

Видео:Как выразить х через у в линейном уравнении с двумя переменнымиСкачать

Как выразить х через у в линейном уравнении с двумя переменными

Выразить переменную из уравнения

При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.

Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).

Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.

Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.

Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

Линейные уравнения с двумя переменными

Как выразить игрек через икс в линейном уравнении с двумя переменными

Линейные уравнения с двумя переменными

Определение: Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y — переменные, a, b,c – некоторые числа.

Например: 5х + 2у = 10; -7х+у = 5; х – у =2

Определение: Решение уравнения с двумя переменными – это пара значений переменных, обращающая это уравнение в верное равенство.

Если х=4, у=1,5 , то 2 ∙ 4 – 3 ∙ 1,5 = 10

т. е. пара чисел (4; 1,5) не является решением уравнения.

Определение: Равносильные уравнения – это уравнения, имеющие одни и те же решения или не имеющие их.

1. В уравнении можно перенести слагаемое из одной части уравнения в другую, изменив его знак.

2. Обе части уравнения можно множить или разделить на одно и то же отличное от нуля число.

Выразить одну переменную через другую:

1) Как выразить игрек через икс в линейном уравнении с двумя переменными2х +у = 5 2) Как выразить игрек через икс в линейном уравнении с двумя переменными3)

График линейного уравнения с двумя переменными

Определение: График уравнения с двумя переменными – это множество всех точек координатной плоскости, координаты которых являются решениями этого уравнения.

1. Пример: 3х + 2у = 6, где а=3, b=2, c=6

План 1) Выразить переменную у

у = Как выразить игрек через икс в линейном уравнении с двумя переменными

у = -1,5х +3 линейная функция вида y = kx + b,

2) Составить таблицу значений х и у

3) Построить график

Как выразить игрек через икс в линейном уравнении с двумя переменными

2. Частные случаи построения графика ax + by = c

у =Как выразить игрек через икс в линейном уравнении с двумя переменными

x =Как выразить игрек через икс в линейном уравнении с двумя переменными

Как выразить игрек через икс в линейном уравнении с двумя переменными

Как выразить игрек через икс в линейном уравнении с двумя переменнымих = 2

Графика не существует

График – вся координатная плоскость

Решение систем уравнений с двумя переменными. Графический способ.

Определение: Система уравнений – это несколько уравнений, для которых находят общее решение.

Как выразить игрек через икс в линейном уравнении с двумя переменными

Определение: Решение системы уравнений с двумя переменными – это пара значений переменных, обращающая каждое уравнение в верное равенство.

Если х=7, у=5, то Как выразить игрек через икс в линейном уравнении с двумя переменными, Как выразить игрек через икс в линейном уравнении с двумя переменными, верно,

т. е. (7; 5) – решение системы уравнений.

Определение: Решить систему – это значит найти все ее решения или доказать, что решений нет.

План решения системы уравнений графическим способом

1. Выразить переменную у в первом уравнении.

2. Выразить переменную у во втором уравнении.

3. В одной системе построить графики данных функций.

4. Координаты точки пересечения графиков и является решением системы уравнений.

Пример: Как выразить игрек через икс в линейном уравнении с двумя переменными

1) х +у = 6 → у = 6-х линейная функция, график вида у = kx + b, k = -1, b = 6

💥 Видео

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Как в линейном уравнении с двумя переменными выразить одну переменную через другую и решить его.Скачать

Как в линейном уравнении с двумя переменными выразить одну переменную через другую и решить его.

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать

7 класс, 8 урок, Линейное уравнение с двумя переменными и его график

Выражение одной переменной через другую в линейном уравнении с двумя переменнымиСкачать

Выражение одной переменной через другую в линейном уравнении с двумя переменными

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как выразить x через y?Скачать

Как выразить x через y?

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурок

Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Вариант 34, № 3. Выражение х через у из линейного уравнения с двумя переменными. Пример 2Скачать

Вариант 34, № 3. Выражение х через у из линейного уравнения с двумя переменными. Пример 2

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Система с тремя переменнымиСкачать

Система с тремя переменными

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Линейное уравнение с двумя переменными 7 классСкачать

Линейное уравнение с двумя переменными 7 класс
Поделиться или сохранить к себе: