В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.
- Что такое вынесение множителя из-под знака корня
- Почему возможно заменить корень на произведение
- Основное правило вынесения множителя из-под корня
- Задачи на вынесение множителя из-под знака корня
- Предварительное преобразование подкоренного выражения
- Вынесение из под знака корня
- Правило вынесения из-под корня
- Квадратный корень
- Корень n-ой степени
- Допустимые действия под корнем
- Вынесение буквы
- Что такое квадратный корень
- Что такое квадратный корень
- Разница между квадратным корнем и арифметическим квадратным уравнением
- Запись иррациональных чисел с помощью квадратного корня
- Извлечение корней
- Свойства арифметического квадратного корня
- Умножение арифметических корней
- Деление арифметических корней
- Возведение арифметических корней в степень
- Внесение множителя под знак корня
- Вынесение множителя из-под знака корня
- Сравнение квадратных корней
- Извлечение квадратного корня из большого числа
Видео:Как считать корни? #shortsСкачать
Что такое вынесение множителя из-под знака корня
Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:
Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.
Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.
Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.
Приведем еще один пример подобного преобразования. У нас есть выражение ( x 2 — 3 · x · y · z ) 2 · x = x 2 — 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными ( x 2 − 3 · x · y · z ) 2 .
Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: ( 3 · a 2 ) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3
Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · ( x 2 + y 2 ) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · ( x 2 · y 2 ) 6 , которое, в свою очередь, упрощается до 1 2 · ( x 2 + y 2 ) · 5 · ( x 2 + y 2 ) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .
Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.
Видео:ЧТО ТАКОЕ КОРЕНЬ В N- СТЕПЕНИ? Пригодится для ЕГЭ #shorts #егэ #огэ #математика #корни #mathСкачать
Почему возможно заменить корень на произведение
В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.
Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:
1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .
2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .
Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:
- при четном n : B n · C n = B n n · C n = B · C n ;
- при нечетном n : B n · C n = B n n · C n = B n n · C n = B · C n .
Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.
Следовательно, можно вывести две формулы:
- B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для нечетного n ;
- B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для четного n .
Здесь B 1 , B 2 , и др. могут быть как числами, так и выражениями.
С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Основное правило вынесения множителя из-под корня
Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.
Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).
Таким образом, схема решения подобных задач выглядит следующим образом:
A n → B n · C n → B · C n , е с л и n — н е ч е т н о е B · C n , е с л и n — ч е т н о е
Если нам надо вынести несколько множителей, то действуем так:
A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n — н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n — ч е т н о е
Теперь можно переходить к решению задач.
Видео:Квадратные корни. Сложение корней. 8 класс #shortsСкачать
Задачи на вынесение множителя из-под знака корня
Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , — 1 2 3 2 · 5 , ( — 0 , 4 ) 7 · 11 7 .
Решение
Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:
- Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
- Во втором выражении показатель тоже четный, значит, — 1 2 3 2 · 5 = — 1 2 3 · 5 = 1 2 3 · 5
В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
— 1 2 3 2 · 5 = — 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 . - Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: ( — 0 , 4 ) 7 · 11 7 = — 0 , 4 · 11 7 .
Возможен и такой вариант расчета:
— 0 , 4 7 · 11 7 = ( — 1 ) 7 · 0 , 4 7 · 11 7 = = — 0 , 4 7 · 11 7 = — 0 , 4 7 · 11 7 = — 0 , 4 · 11 7
Или такой:
— 0 , 4 7 · 11 7 = ( — 1 ) 7 · 0 , 4 7 · 11 7 = = — 0 , 4 7 · 11 7 = 0 , 4 7 · — 11 7 = 0 , 4 · — 11 7 = — 0 , 4 · 11 7
Ответ: 1 ) 2 · 7 ; 2 ) 1 2 3 · 5 ; 3 ) — 0 , 4 · 11 7 .
Условие: преобразуйте выражение ( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 .
Решение:
При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.
( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = — 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4
Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.
Есть и другой способ. Преобразуем само выражение, приведя его к виду B n · C . После этого уже будем выносить множители:
( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = ( — 2 · 0 , 3 · 7 ) 4 · 11 4 = ( — 4 , 2 ) 4 · 11 4 = = — 4 , 2 · 11 4 = 4 , 2 · 11 4
Ответ: ( — 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = — 4 , 2 · 11 4 = 4 , 2 · 11 4 .
Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Предварительное преобразование подкоренного выражения
Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.
Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .
Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .
Решение
Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A : ( B n ) = 24 · x : ( 2 3 ) = 3 · x .
Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .
Ответ: 24 · x 3 = 2 · 3 · x 3 .
А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.
Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.
Условие: необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .
Решение
Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .
Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .
2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4
В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:
2 5 4 · 2 2 · 5 4
Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:
2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2
2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4
Ответ: 1 ) 2 4 · 5 4 = 2 · 5 4 , 2 ) 2 7 · 5 4 = 2 · 40 4 , 3 ) 2 22 · 5 4 = 32 · 20 4 .
Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.
Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.
Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1 ) 45 ; 2 ) 135 ; 3 ) 3456 ; 4 ) 102 .
- Выполняем разложение 45 на простые множители.
45 15 5 1 3 3 5
То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:
3 2 · 5 = 3 · 5 = 3 · 5
- Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :
3 2 · 15 = 3 · 15 = 3 · 15
- Разложим на простые множители число 3456 :
3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3
У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = ( 2 3 ) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = ( 2 3 ) 2 · 2 · 3 2 · 3 = ( 2 3 ) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6
- Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.
Ответ: 1 ) 45 = 3 · 5 ; 2 ) 135 = 3 · 15 ; 3 ) 3456 = 24 · 6 ; 4 ) 102 .
Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.
Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.
Решение
Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.
0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6
Используя свойства степени, перепишем выражение в следующем виде:
3 2 2 · 5 2 3 · 7
Подставим получившееся выражение в исходное и получим:
200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3
К такому же ответу можно прийти и с помощью других преобразований:
200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3
Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .
Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.
Условие: выполните упрощение иррационального выражения 2 · ( 3 + 2 · 2 ) .
Решение
Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .
То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .
В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:
2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2
Ответ: 2 · 3 + 2 · 2 = 2 + 2 .
Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.
Условие: вынесите множитель из-под знака корня в выражениях ( x — 5 ) 5 4 и ( x — 5 ) 6 4 .
Решение
- Выполняем преобразование в первом примере.
( x — 5 ) 5 4 = ( x — 5 ) 4 · x — 5 4 = x — 5 · x — 5 4
Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство ( x − 5 ) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x — 5 будет неотрицательное число. Значит, можем записать следующее:
x — 5 · x — 5 4 = x — 5 · x — 5 4
- ( x — 5 ) 6 4 = ( x — 5 ) 4 · x — 5 2 4 = = x — 5 · ( x — 5 ) 2 4 = x — 5 · x — 5 2 4
Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,
x — 5 · x — 5 2 4 = x — 5 · x — 5
Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку ( x − 5 ) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x — 5 · x — 5 или представляем его в виде системы уравнений
( x — 5 ) · x — 5 , x ≥ 5 ( 5 — x ) · 5 — x , x 5
Ответ: 1 ) ( x — 5 ) 5 4 = ( x — 5 ) · x — 5 4 ; 2 ) ( x — 5 ) 6 4 = x — 5 · x — 5 .
Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .
Решение
Выносим за скобки x 3 и получаем x 3 · ( x 2 + 2 · x · y + y 2 ) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · ( x 2 + 2 · x · y + y 2 ) = x 3 · ( x + y ) 2 .
Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x
Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · ( x + y ) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .
Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .
Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.
Видео:Математика 5 класс. Уравнение. Корень уравненияСкачать
Вынесение из под знака корня
В данной публикации мы рассмотрим, как выносить числа (множители) и буквы из-под знака корня второй и более старших степеней. Информация сопровождается практическими примерами для лучшего понимания.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Правило вынесения из-под корня
Квадратный корень
Вынести число (множитель) из-под знака корня – это значит извлечь корень из подкоренного выражения (т.е. того, что находится под знаком корня).
Если a 2 = b, то √ b = a.
- √ 4 = 2, т.к. 2 2 = 4;
- √ 36 = 6, т.к. 6 2 = 36.
Примечание: чтобы было проще выносить числа и множители из-под знака квадратного корня, рекомендуется выучить квадраты натуральных чисел, хотя бы до 20.
Корень n-ой степени
Для вынесения подкоренного выражения из-под корня третьей и более старших степеней, извлекаем корень в соответствующей степени.
Пример 1
Вынесем множитель из-под корня .
Решение:
В данном случае извлечь квадратный корень можно только из числа двадцать пять, что мы и сделаем.
Пример 2
Вынесем множитель из √ 45 .
Решение:
1. Сперва разложим подкоренное выражение (число 45) на множители. В нашем случае – это 9 и 5.
2. Из полученных чисел извлечь квадратный корень можно только из девяти. Таким образом получаем:
Допустимые действия под корнем
Если требуется вынести из-под корня выражение, то это можно сделать только в отношении произведения.
- √ 16 · 5 = √ 16 · √ 5 (правильно)
- √ 25 + 11 ≠ √ 25 + √ 11 (неправильно)
- √ 47 – 38 ≠ √ 47 – √ 38 (неправильно)
- √ 8 : 2 ≠ √ 8 : √ 2 (неправильно)
За исключением первого варианта, в остальных случаях сперва необходимо выполнить действия под корнем, а потом уже извлечь его.
- √ 25 + 11 = √ 36 = 6
- √ 47 – 38 = √ 9 = 3
- √ 8 : 2 = √ 4 = 2
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Вынесение буквы
Вынести букву из-под корня – это то же самое, что и возвести ее в дробь, где в числителе – степень подкоренного выражения, в знаменателе – самого корня.
Примечание: этой же формулой можно пользоваться, подставляя вместо буквы конкретные числа.
Видео:Извлекаем огромные корни В УМЕ!💣Скачать
Что такое квадратный корень
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Внесение множителя под знак корня. Вынесение множителя из под знака корня. Алгебра, 8 классСкачать
Что такое квадратный корень
Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:
Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.
Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0
Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.
Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.
Попробуем найти корень из √-16
Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.
Если — 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).
Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.
Числа, стоящие под знаком корня, должны быть положительными.
Исходя из определения, значение корня также не должно быть отрицательным.
Здесь могут возникнуть резонные вопросы, почему, например, в примере x 2 = 16, x = 4 и x = -4.
Видео:Квадратный корень. 8 класс.Скачать
Разница между квадратным корнем и арифметическим квадратным уравнением
Прежде всего, чтобы разграничить эти два понятия, запомните:
- x 2 = 16 не равно x = √16.
Это два нетождественных друг другу выражения.
- x 2 = 16 — это квадратное уравнение.
- x = √ 16 — арифметический квадратный корень.
Из выражения x 2 = 16 следует, что:
- |x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.
Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.
В то же самое время, из выражения x = √16 следует, что x = 4.
Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:
- Пример решен неверно
- Это квадратное уравнение.
Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.
Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.
Даны два выражения:
Первое выражение — квадратное уравнение.
Второе выражение — арифметический квадратный корень.
Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.
Видео:Алгебра 8. Урок 6 - Квадратный корень. Вынесение и внесение множителяСкачать
Запись иррациональных чисел с помощью квадратного корня
Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.
Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.
Примеры иррациональных чисел:
Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.
Дано уравнение: x 2 = 2.
Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.
Переберем числа, чтобы удостовериться в этом:
1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.
Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.
Решение следующее:
Строим график функции y = x 2 .
Отмечаем решения на графике: -√2; √2.
Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: √2 = 1,414213… .
В таком виде ответ не записывают — нужно оставить квадратный корень.
x 2 = 2.
x = √2
x = -√2.
Видео:КАК ВЫНЕСТИ МНОЖИТЕЛЬ ИЗ ЗНАКА КОРНЯ?Скачать
Извлечение корней
Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.
Таблица квадратов
Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:
- 1. Извлеките квадратный корень: √289
Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.
Влево — 1, вверх — 7.
- 2. Извлеките квадратный корень: √3025
Ищем в таблице число 3025.
Влево — 5, вверх — 5.
- 3. Извлеките квадратный корень: √7396
Ищем в таблице число 7396.
Влево — 8, вверх — 6.
- 4. Извлеките корень: √9025
Ищем в таблице число 9025.
Влево — 9, вверх — 5.
- 5. Извлеките корень √1600
Ищем в таблице число 1600.
Влево — 4, вверх — 0.
Извлечением корня называется нахождение его значение.
Видео:Преобразование выражений, содержащих кв.корни. Внесение и вынесения из, под знак кв. корня. 8 класс.Скачать
Свойства арифметического квадратного корня
У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.
- Корень произведения равен произведению корней
- Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя
- Чтобы возвести корень в степень, нужно возвести в степень значение под корнем
Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Умножение арифметических корней
Для умножения арифметических корней используйте формулу:
Примеры:
Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.
Если нет возможности извлечь корни из чисел, то поступаем так:
- Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:
Видео:🔴 Найдите корень уравнения 2+9x=4x+3 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Деление арифметических корней
Для деления арифметических корней используйте формулу:
Примеры:
Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49
Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.
Видео:Алгебра 8 класс. Уравнения с корнямиСкачать
Возведение арифметических корней в степень
Для возведения арифметического корня в степень используйте формулу:
Примеры:
Эти две формулы нужно запомнить:
- (√a) 2 = a
- √a 2 = |a|
Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.
Видео:Как решают уравнения в России и СШАСкачать
Внесение множителя под знак корня
Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.
А теперь давайте разберемся, как вносить множитель под знак корня.
Дано выражение: 7√9
Число семь умножено на квадратный корень из числа девять.
Извлечем квадратный корень и умножим его на 7.
В данном выражение число 7 — множитель. Давайте внесем его под знак корня.
Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.
Вы помните, что (√a) 2 = a
Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.
7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.
Формула внесения множителя под знак корня:
Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.
Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать
Вынесение множителя из-под знака корня
С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.
Дано выражение в виде квадратного корня из произведения.
Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.
Извлекаем корень из всех имеющихся множителей.
В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:
Таким образом множитель выносится из-под знака корня.
Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.
Раскладываем подкоренное выражение на множители 28 = 7*4.
Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.
Ответ: по правилу извлечения квадратного корня из произведения,
Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.
Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.
Вынесем в двух последних выражения множитель из-под знака корня.
Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.
Мы видим, что во всем выражении есть один общий множитель — √5.
Выносим общий множитель за скобки:
Далее вычисляем все, что в скобках:
Видео:Метод выделения полного квадрата. 8 класс.Скачать
Сравнение квадратных корней
Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.
Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.
Если:
Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.
- Сравните два выражения: √50 и 9√5
Ответ: преобразовываем выражение 9√5.
9√5 = √81 * √5 = √81*5 = √405
Это значит, что 6√5 > √18.
Сравните два выражения: 7√12 и √20
Ответ: преобразовываем выражение 7√12.
7√12 = √49 * √12 = √49*12 = √588
Это значит, что 7√12 > √20.
Как видите, ничего сложного в сравнении арифметических квадратных корней нет.
Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.
Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.
Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.
Таких калькуляторов в интернете много, вот один из них.
Извлечение квадратного корня из большого числа
Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.
Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.
Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:
- Определить «сотни», между которыми оно стоит.
- Определить «десятки», между которыми оно стоит.
- Определить последнюю цифру в этом числе.
Извлечь корень из большого числа можно разными способами — вот один из них.
Извлечем корень из √2116.
Наша задача в том, чтобы определить между какими десятками стоит число 2116.
Мы видим что, 2116 больше 1600, но меньше 2500.
Это значит, что число 2116 находится между 40 2 и 50 2 .
41, 42, 43, 44, 45, 46, 47, 48, 49.
Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.
Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.
Как пользоваться таблицей
4 2 = 16 ⇒ 6
5 2 = 25 ⇒ 5
6 2 = 36 ⇒ 6
7 2 = 49 ⇒ 9
8 2 = 64 ⇒ 4
9 2 = 81 ⇒ 1
Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.
Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.
Число 43, возведенное в квадрат, даст число, на конце которого — 9.
Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.
Таким образом, у нас остаются два варианта: 44 2 и 46 2 .
Далее вычисляем: 44 * 44 = 1936.
Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.
Еще пример. Извлечем корень из числа √11664
Разложим число 11664 на множители:
Запишем выражение в следующем виде:
Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.
Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.
- 1. Вычислите значение квадратного корня: √36
- 2. Вычислите значение квадратного корня: √64*36
- 3. Вычислите значение квадратного корня:
- 4. Вычислите значение квадратного корня:
- 5. Вычислите значение квадратного корня:
- 6. Вычислите значение выражения: 4√16 — 12
- 7. Вычислите значение выражения: 5√9 — 8
- 8. Вычислите значение выражения: 7√25 — 10
- 9. Вычислите значение квадратного корня:
- 10. Вычислите значение квадратного уравнения:
- 11. Вычислите значение квадратного уравнения:
- 12. Извлеките квадратный корень из числа √7056 удобным вам способом
Как решаем: - 13. Вычислите значение квадратного корня √0,81
Ответ: √0,81 = 0,9 - 14. Вычислите значение квадратного корня:
Как решаем: = 0,09 - 15. Вычислите значение выражения: 8√81 — 20
Как решаем: 8√81 — 20 = 8 * 9 — 20 = 72 — 20 = 52
Ответ: 8√81 — 20 = 52. - 16. Вычислите значение выражения: 13√100 — 15
Как решаем: 13√100 — 15 = 13 * 10 — 15 = 130 — 15 = 115
Ответ: 13√100 — 15 = 115. - 17. Вычислите значение выражения: √16 + 5√4
Как решаем: √16 + 5√4 = 4 + 5 * 4 = 4 + 20 = 24 Ответ: √16 + 5√4 = 24. - 18. Вычислите значение выражения: √36 + 2√9
Как решаем: √36 + 2√9 = 6 + 2 * 3 = 6 + 6 = 12
Ответ: √36 + 2√9 = 12. - 19. Вычислите значение выражения: 2√16 — 3√25
Как решаем: 2√16 — 3√25 = 2 * 4 — 3 * 5 = 8 — 15 = -7
Ответ: 2√16 — 3√25 = -7. - 20. Вычислите значение выражения: 3√81 — 5√9
Как решаем: 3√81 — 5√9 = 3*9 — 5 * 3 = 27 — 15 = 12
Ответ: 3√81 — 5√9 = 12. - 21. Вынесите множитель из-под знака корень: √60
Как решаем: √60 = √15 * √4 = 2√15
Ответ: √60 = 2√15. - 22. Вынесите множитель из-под знака корень: √160
Как решаем: √160 = √16 * √10 = 4√10
Ответ: √160 = 4√10. - 23. Внесите множитель под знак корня: 6√7
Как решаем: √6 2 * 7 = √36 * √7 = √252
Ответ: 6√7 = √252. - 24. Внесите множитель под знак корня: 8√2
Как решаем: 8√2 = √8 2 * 2 = √64 * √2 = √128 Ответ: 8√2 = √128. - 25. Внесите множитель под знак корня: 9√5
Как решаем: 9√5 = √9 2 * 5 = √81 * √5 = √405
Ответ: 9√5 = √405. - 26. Упростите выражение: (5 — √2) 2
Как решаем: (5 — √2) 2 = 5 2 — 2 * 5 * √2 + (√2) 2 = 25 — 10√2 + 2 = 27 — 10√2.
Ответ: (5 — √2) 2 = 27 — 10√2. - 27. Вычислите значение выражения: 3√49 — 3√25
Как решаем: 3√49 — 3√25 = 3 * 7 — 3 * 5 = 21 — 15 = 6
Ответ: 3√49 — 3√25 = 6. - 28. Вычислите значение квадратного корня: √484 * √576
Как решаем: √484 * √576 = 22 * 24 = 528
Ответ: √484 * √576 = 528. - 29. Вычислите значение квадратного корня: √625 * √81
Как решаем: √625 * √81 = 25 * 9 = 225
Ответ: √625 * √81 = 225. - 30. Найдите значение выражения: 3√100 — √144
Как решаем: 3100 — 144 = 3 * 10 — 12 = 18
Ответ: 3√100 — √144 = 18.
- 0 0 0 0 0 0
Вебинар : Гаджеты: как вернуть ребёнка в реальность среда, 23 февраля в 19:00 МСК