Как ввести систему уравнений в wolfram

Как ввести систему уравнений в wolfram

1. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений.
Пример 1 . Чтобы решить уравнение x 2 + 3 x — 4 = 0, нужно ввести solve x^2+3x-4=0
Пример 2. Чтобы решить уравнение log32x = 2 , нужно ввести solve log(3, 2x)=2
Пример 3. Чтобы решить уравнение 25 x-1 = 0.2 , нужно ввести solve 25^(x-1)=0.2
Пример 4. Чтобы решить уравнение sin x = 0.5 , нужно ввести solve sin(x)=0.5

2. Решение систем уравнений.
Пример . Чтобы решить систему уравнений

нужно ввести solve x+y=5 && x-y=1
Знаки && в данном случае обозначает логическое «И».

3. Решение рациональных неравенств любой степени.
Пример . Чтобы решить неравенство x 2 + 3 x — 4 solve x^2+3x-4

4. Решение систем рациональных неравенств.
Пример. Чтобы решить систему неравенств

нужно ввести solve x^2+3x-4 && 2х^2 — x + 8 > 0
Знаки && в данном случае обозначает логическое «И».

5. Раскрытие скобок + приведение подобных в выражении.
Пример . Чтобы раскрыть скобки в выражении (c+d) 2 (a-c) и привести подобные, нужно
ввести expand (c+d)^2*(a-c) .

6. Разложение выражения на множители.
Пример . Чтобы разложить на множители выражение x 2 + 3 x — 4, нужно ввести factor x^2 + 3x — 4 .

7. Вычисление суммы n первых членов последовательности (в том числе арифметической и геометрической прогрессий).
Пример . Чтобы вычислить сумму 20 первых членов последовательности, заданной формулой an = n 3 +n, нужно ввести sum n^3+n, n=1..20
Если нужно вычислить сумму первых 10 членов арифметической прогрессии, у которой первый член a 1 = 3, разность d = 5, то можно, как вариант, ввести a1=3, d=5, sum a1 + d(n-1), n=1..10
Если нужно вычислить сумму первых 7 членов геометрической прогрессии, у которой первый член b 1 = 3, разность q = 5, то можно, как вариант, ввести b1=3, q=5, sum b1*q^(n-1), n=1..7

8. Нахожд ение производной.
Пример . Чтобы найти производную функции f(x) = x 2 + 3 x — 4, нужно ввести derivative x^2 + 3x — 4

9. Нахожд ение неопределенного интеграла.
Пример . Чтобы найти первообразную функции f(x) = x 2 + 3 x — 4, нужно ввести integrate x^2 + 3x — 4

10. Вычисление определенного интеграла.
Пример . Чтобы вычислить интеграл функции f(x) = x 2 + 3 x — 4 на отрезке [5, 7],
нужно ввести integrate x^2 + 3x — 4, x=5..7

11. Вычисление пределов.
Пример . Чтобы убедиться, что

Как ввести систему уравнений в wolfram

введите lim (x -> 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x, стремящемся к бесконечности, следует вводить x -> inf .

12. Исследование функции и построение графика .
Пример . Чтобы исследовать функцию x 3 — 3 x 2 и построить ее график, просто введите x^3-3x^2 . Вы получите корни (точки пересечения с осью ОХ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке .
Пример . Чтобы найти минимальное значение функции x 3 — 3 x 2 на отрезке [0.5, 2],
нужно ввести minimize (x^3-x^2),
Чтобы найти максимальное значение функции x 3 — 3 x 2 на отрезке [0.5, 2],
нужно ввести maximize (x^3-x^2),

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как ввести систему уравнений в wolfram

Достаточно войти на страницу wolframalpha набрать в текстовом поле свой запрос и нажать на кнопку «=»

(имеет всплывающую подсказку вычислить ) или просто нажать Enter .
Функционал Wolfram Alpha не ограничивается лишь поиском ответов на поставленные вопросы. С помощью этой системы можно, например, строить графики и сопоставлять различные данные, что намного наглядней и лучше воспринимается, чем просто текст. Кроме того, с помощью Wolfram Alpha можно производить математические операции, как элементарные (которые без проблем выполняет и Google), так и решать уравнения различной сложности. Также Wolfram Alpha умеет строить графики функций, вычислять значения синуса или косинуса и так далее.

Например можно решить вот такое уравнение :

Как ввести систему уравнений в wolfram

а чтобы узнать, какое расстояние между Москвой и Тель-Авивом, нужно ввести в поле

и вот вам результат:
Как ввести систему уравнений в wolfram

Один из минусов сервиса Wolfram Alpha – это его англоязычность…так что если хотите задать вопрос системе придется писать его на английском языке. Даже неизвестно, появится ли русскоязычная версия этой поисково-вычислительной системы.

Основные команды для Вольфрам Альфа

(Команды вводятся в строку Вольфрама — например выше. Все команды заканчиваются нажатием Enter)

1. Решение уравнений, построение графиков

  • Арифметические знаки плюс, минус, умножить, поделить +, — , *, / Примеры: 3*2, x*y, (a+b)/c
  • Возведение в степень «x в степени а» x^a. Примеры x^a, x**a, (a+b)^2, (a+b)**2, (a+b)^(2x+1)
  • Скобки. Действия в скобках ведутся первыми
  • Функции .sin(x), cos(x), tan(x)=sin(x)/cos(x), cotan(x)=cos(x)/sin(x), sec(x)=1/cos(x), cosec(x)=1/sin(x)
  • Функции log(x), exp(x), sinh(x), cosh(x), tanh(x), cotanh(x)
  • Корень квадратный из «х» sqrt(x) или x^(1/2)

Чтобы вычислить выражение, нужно его просто ввести. Например корень из 2 будет выглядеть как sqrt(2) или же 2^(1/2).

2. Чтобы решить уравнение, нужно просто его ввести

3. Чтобы построить график, нужно использовать команду plot

Например нарисуем с помощью Вольфрама функцию 2^(-x) cos(x). Это делается командой plot (график).

Чтобы построить несколько графиков на одной координатной плоскости (например для визуализации решения систем уравнений), при значении переменной x в интервале (A,B), нужно использовать команду

4. Чтобы собрать множители из двучлена (многочлена) f, наберите factor[f]

5. Чтобы развалить произведение f на слагаемые, используйте команду expand[f]

6. Чтобы упростить выражение f[x], наберите команду Simplify[f[x]]

Например упростить «е в степени догарифм х»:

Simplify[ exp[ log[x] ] ]

Вольфрам альфа: интегралы

Как работать с Wolfram Alpha

Видео:Wolframalpha : решение любых задач для студента по алгебре, вышке, физике, дифференциальные ур. и прСкачать

Wolframalpha : решение любых задач для студента по алгебре, вышке, физике, дифференциальные ур. и пр

Основные операции

  • Сложение Как ввести систему уравнений в wolfram: a+b
  • Вычитание Как ввести систему уравнений в wolfram: a-b
  • Умножение Как ввести систему уравнений в wolfram: a*b
  • Деление Как ввести систему уравнений в wolfram: a/b
  • Возведение в степень Как ввести систему уравнений в wolfram: a^b

Примеры

  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).

Видео:12.01 Решение систем ДУ в Wolfram MathematicaСкачать

12.01 Решение систем ДУ в Wolfram Mathematica

Знаки сравнения

  • Меньше Как ввести систему уравнений в wolfram: : >
  • Равно Как ввести систему уравнений в wolfram: = или ==
  • Меньше или равно Как ввести систему уравнений в wolfram: =

Видео:Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Логические символы

  • И Как ввести систему уравнений в wolfram: &&
  • ИЛИ Как ввести систему уравнений в wolfram: ||
  • НЕ Как ввести систему уравнений в wolfram: !

Видео:Видео курс Wolfram Mathematica | Лин. системы | Часть 1/2Скачать

Видео курс Wolfram Mathematica | Лин. системы | Часть 1/2

Основные константы

  • Число Как ввести систему уравнений в wolfram: Pi
  • Число Как ввести систему уравнений в wolfram: E
  • Бесконечность Как ввести систему уравнений в wolfram: Infinity, inf или oo

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Основные функции

Как ввести систему уравнений в wolfram

  • Как ввести систему уравнений в wolfram: x^a

  • Как ввести систему уравнений в wolfram: Sqrt[x]
  • Как ввести систему уравнений в wolfram: x^(1/n)
  • Как ввести систему уравнений в wolfram: a^x
  • Как ввести систему уравнений в wolfram: Log[a, x]
  • Как ввести систему уравнений в wolfram: Log[x]
  • Как ввести систему уравнений в wolfram: cos[x] или Cos[x]
  • Как ввести систему уравнений в wolfram: sin[x] или Sin[x]
  • Как ввести систему уравнений в wolfram: tan[x] или Tan[x]
  • Как ввести систему уравнений в wolfram: cot[x] или Cot[x]
  • Как ввести систему уравнений в wolfram: sec[x] или Sec[x]
  • Как ввести систему уравнений в wolfram: csc[x] или Csc[x]
  • Как ввести систему уравнений в wolfram: ArcCos[x]
  • Как ввести систему уравнений в wolfram: ArcSin[x]
  • Как ввести систему уравнений в wolfram: ArcTan[x]
  • Как ввести систему уравнений в wolfram: ArcCot[x]
  • Как ввести систему уравнений в wolfram: ArcSec[x]
  • Как ввести систему уравнений в wolfram: ArcCsc[x]
  • Как ввести систему уравнений в wolfram: cosh[x] или Cosh[x]
  • Как ввести систему уравнений в wolfram: sinh[x] или Sinh[x]
  • Как ввести систему уравнений в wolfram: tanh[x] или Tanh[x]
  • Как ввести систему уравнений в wolfram: coth[x] или Coth[x]
  • Как ввести систему уравнений в wolfram: sech[x] или Sech[x]
  • Как ввести систему уравнений в wolfram: csch[x] или Csch[е]
  • Как ввести систему уравнений в wolfram: ArcCosh[x]
  • Как ввести систему уравнений в wolfram: ArcSinh[x]
  • Как ввести систему уравнений в wolfram: ArcTanh[x]
  • Как ввести систему уравнений в wolfram: ArcCoth[x]
  • Как ввести систему уравнений в wolfram: ArcSech[x]
  • Как ввести систему уравнений в wolfram: ArcCsch[x]

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение уравнений

Чтобы получить решение уравнения вида Как ввести систему уравнений в wolframдостаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve[f[x]=0, x].

Примеры

  • Solve[Cos[x]+Cos[2x]+Sin[4x]=0,x] или Cos[x]+Cos[2x]+Sin[4x]=0;
  • Solve[x^5+x^4+x+1=0,x] или x^5+x^4+x+1=0;
  • Solve[Log[3,x^2+x+1]-Log[9,x^2]=0,x] или Log[3,x^2+x+1]-Log[9,x^2]=0.

Если Ваше уравнение содержит несколько переменных, то запись: f[x, y,…,z]=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции Как ввести систему уравнений в wolframи т. д. Чтобы получить решение уравнения вида Как ввести систему уравнений в wolframпо какой-либо одной из переменных, нужно написать в строке: Solve[f[x, y, …, z]=0, j], где Как ввести систему уравнений в wolfram— интересующая Вас переменная.

Примеры

  • Cos[x+y]=0 или Solve[Cos[x+y]=0,x] или Solve[Cos[x+y]=0,y];
  • x^2+y^2-5=0 или Solve[x^2+y^2-5=0,x] или Solve[x^2+y^2-5=0,y];
  • x+y+z+t+p+q=9.

Видео:Rec 03 23 22 Решение систем уравнений с использованием Wolfram Д439Скачать

Rec 03 23 22 Решение систем уравнений с использованием Wolfram Д439

Решение неравенств

Решение в Wolfram Alpha неравенств типа 0″ src=»http://upload.wikimedia.org/math/3/d/9/3d97eb56e02c2889dd20a89529548180.png» />, Как ввести систему уравнений в wolframполностью аналогично решению уравнения Как ввести систему уравнений в wolfram. Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve[f[x]>0, x] или Solve[f[x]>=0,x].

Примеры

  • Cos[10x]-1/2>0 или Solve[Cos[10x]-1/2>0,x];
  • x^2+5x+10>=0 или Solve[x^2+5x+10>=0,x].

Если Ваше неравенство содержит несколько переменных, то запись: f[x, y,…,z]>0 или f[x, y,…,z]>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve[f[x, y,…,z]>0,j] или Solve[f[x, y,…,z]>=0,j], где Как ввести систему уравнений в wolfram— интересующая Вас переменная.

Примеры

  • Cos[x+y]>0 или Solve[Cos[x+y]>0,x] или Solve[Cos[x+y]>0,y];
  • x^2+y^3-5 =9.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Сервис Wolfram Alpha поддерживает возможность построения графиков функций как вида Как ввести систему уравнений в wolfram, так и вида Как ввести систему уравнений в wolfram. Для того, чтобы построить график функции Как ввести систему уравнений в wolframна отрезке Как ввести систему уравнений в wolframнужно написать в строке Wolfram Alpha: Plot[f[x],]. Если Вы хотите, чтобы диапазон изменения ординаты Как ввести систему уравнений в wolframбыл конкретным, например Как ввести систему уравнений в wolfram, нужно ввести: Plot[f[x],,].

Если Вам требуется построить сразу несколько графиков на одном рисунке, то перечислите их, используя союз «И»:Plot[f[x]&&g[x]&&h[x]&&…&&t[x],].

Для того, чтобы построить график функции Как ввести систему уравнений в wolframна прямоугольнике Как ввести систему уравнений в wolfram, нужно написать в строке Wolfram Alpha: Plot[f[x, y],,]. К сожалению, диапазон изменения аппликаты Как ввести систему уравнений в wolframпока что нельзя сделать конкретным. Тем не менее, интересно отметить, что при построении графика функции Как ввести систему уравнений в wolframВы получите не только поверхность, которую она определяет, но и «контурную карту» поверхности (линии уровня).

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Математический анализ

Wolfram Alpha способен находить пределы функций, последовательностей, различные производные, определенные и неопределенные интегралы, решать дифференциальные уравнения и их системы и многое многое другое.

Пределы

Для того, чтобы найти предел последовательности Как ввести систему уравнений в wolframнужно написать в строке Wolfram Alpha: Limit[x_n, n -> Infinity].

Примеры

  • Limit[n^3/(n^4 + 2*n), n -> Infinity];
  • Limit[(1+1/n)^n, n -> Infinity].

Найти предел функции Как ввести систему уравнений в wolframпри Как ввести систему уравнений в wolframможно совершенно аналогично: Limit[f[x], x -> a].

Производные

Для того, чтобы найти производную функции Как ввести систему уравнений в wolframнужно написать в строке WolframAlpha: D[f[x], x]. Если Вам требуется найти производную n-го порядка, то следует написать: D[f[x], ]. В том случае, если Вам требуется найти частную производную функции Как ввести систему уравнений в wolframнапишите в окне гаджета: D[f[x, y, z,…,t], j], где Как ввести систему уравнений в wolfram— интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D[f[x, y, z,…,t], ], где Как ввести систему уравнений в wolframозначает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Интегралы

Для того, чтобы найти неопределенный интеграл от функции Как ввести систему уравнений в wolframнужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл Как ввести систему уравнений в wolframтак же просто: Integrate[f[x], ] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения Как ввести систему уравнений в wolframнужно написать в строке WolframAlpha: F[x, y, y’,y»,…] (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F[x, y, y’,y»,…], y[s]==A,y'[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: , где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Ошибки при работе с системой

Система может допускать некоторые ошибки при решении сложных задач [1] . К примеру, если попытаться решить неравенство Как ввести систему уравнений в wolfram, для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) Примечания

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Дифференциальные уравнения

Язык Wolfram позволяет решать обыкновенные дифференциальные уравнения, дифференциальные уравнения в частных производных и уравнения с запаздыванием.

Функция DSolveValue возвращает решение дифференциального уравнения в общем виде:

Как ввести систему уравнений в wolfram

Out[1]=Как ввести систему уравнений в wolfram

Используем символ /. для замены константы:

Как ввести систему уравнений в wolfram

Out[2]=Как ввести систему уравнений в wolfram

Или добавим начальные условия для получения частного решения:

Как ввести систему уравнений в wolfram

Out[3]=Как ввести систему уравнений в wolfram

Функция NDSolveValue позволяет находить численные решения:

Как ввести систему уравнений в wolfram

Out[1]=Как ввести систему уравнений в wolfram

Объект InterpolatingFunction можно визуализировать без дополнительной обработки:

Как ввести систему уравнений в wolfram

Out[2]=Как ввести систему уравнений в wolfram

Для решения систем дифференциальных уравнений, необходимо использовать списки для задания уравнений и условий:

(Обратите внимание, что перенос уравнений на новую строку не влияет на результат.)

Как ввести систему уравнений в wolfram

Out[1]=Как ввести систему уравнений в wolfram

Построим решения системы в виде параметрического графика:

💡 Видео

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

6 способов в одном видеоСкачать

6 способов в одном видео

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения
Поделиться или сохранить к себе: